BÀI 1

VECTƠ VÀ TỌA ĐỘ

A. TÔM TÁT LÝ THUYẾT

I. HỆ TỌA ĐỘ

Hệ tọa độ Descartes vuông góc Oxy gồm hai trục vuông góc nhau x'Ox và y'Oy với 2 vector đơn vị lần lượt là \(\vec{i} \) và \(\vec{j} \) mà: \(|\vec{i}| = |\vec{j}| = 1 \)

- x'Ox: trục hoành
- y'Oy: trục tung
- O: gốc tọa độ

II. TỌA ĐỘ CỦA VECTƠ

Cho hệ tọa độ Oxy và một vectơ \(\vec{u} \). Luôn luôn có một cặp số thực duy nhất \((u_1; u_2)\) sao cho:

\[\vec{u} = u_1 \vec{i} + u_2 \vec{j} \]

Cặp số thực \((u_1; u_2)\) này được gọi là tọa độ của vectơ \(\vec{u} \) và ký hiệu là \(\vec{u} = (u_1; u_2) \)

Đối với hệ tọa độ Oxy, cho hai vectơ \(\vec{u} = (u_1; u_2) \) và \(\vec{v} = (v_1; v_2) \). Ta có:

1.) \(\vec{u} = \vec{v} \Leftrightarrow \begin{cases} u_1 = v_1, \\ u_2 = v_2. \end{cases} \)

2.) \(\vec{u} \pm \vec{v} = (u_1 \pm v_1; u_2 \pm v_2) \)

3.) \(k \vec{u} = (ku_1; ku_2) \) (\(k \in \mathbb{R} \))

4.) Tích vô hướng: \(\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2. \)

5.) Độ dài vectơ: \(|\vec{u}| = \sqrt{u_1^2 + u_2^2} \)

6.) \(\cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = \frac{u_1 v_1 + u_2 v_2}{\sqrt{u_1^2 + u_2^2} \sqrt{v_1^2 + v_2^2}} \)

7.) \(\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0 \)

8.) \(\vec{u} \) và \(\vec{v} \) cùng phương khi và chỉ khi: \(u_1 v_2 - u_2 v_1 = 0 \)

III. TỌA ĐỘ CỦA ĐIỂM
Cho hệ tọa độ Oxy và một điểm M tùy ý. Tọa độ (x; y) của vectơ \(\overrightarrow{OM} \) được gọi là tọa độ của điểm M và ký hiệu là: M(x; y).

- x: hoành độ.
- y: tung độ.

Chú ý:

Nếu hạ MP \(\perp Ox; MQ \perp Oy \) thì \(x = \overrightarrow{OP}, y = \overrightarrow{OQ} \).

Đối với hệ tọa độ Oxy, cho hai điểm \(A(x_A; y_A) \) và \(B(x_B; y_B) \). Ta có:

1. \(\overrightarrow{AB} = (x_B - x_A; y_B - y_A) \)
2. \(AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} \)

3. Nếu điểm M chia đoạn thẳng AB theo tỷ số \(k \neq 1 \), tức là: \(\overrightarrow{MA} = k \cdot \overrightarrow{MB} \) thì tọa độ của M là:

\[
\begin{align*}
x_M &= \frac{x_A - k \cdot x_B}{1 - k} \\
y_M &= \frac{y_A - k \cdot y_B}{1 - k}
\end{align*}
\]

4. Tọa độ trung điểm I của đoạn thẳng AB là:

\[
\begin{align*}
x_I &= \frac{x_A + x_B}{2} \\
y_I &= \frac{y_A + y_B}{2}
\end{align*}
\]

B. BÀI TẬP ÁP DỤNG

1. Cho tam giác ABC với: A(1; 0), B(5; 0), C(2; 3). Tìm các điểm sau của tam giác:
 a.) Trong tâm G.
 b.) Trực tâm H.
 c.) Chân A’ của đường cao hạ từ A xuống cạnh BC.
 d.) Tâm I của đường tròn ngoại tiếp.

Giải

Gọi (x; y) là tọa độ của điểm cần tìm.

a.) G là trọng tâm tam giác ABC nên:

\[
x_G = \frac{x_A + x_B + x_C}{3} = \frac{8}{3}; \quad y_G = \frac{y_A + y_B + y_C}{3} = 1
\]

Vậy: G \(\left(\frac{8}{3}; 1 \right) \)

b.) H là trực tâm tam giác ABC nên:

\[
\begin{align*}
AH \cdot BC &= 0 \\
BH \cdot AC &= 0
\end{align*}
\]

Mà: \(\overrightarrow{AH} = (x - 1; y) \); \(\overrightarrow{BC} = (-3; 3) \);

\(\overrightarrow{BH} = (x - 5; y) \); \(\overrightarrow{AC} = (1; 3) \)
Nên điều kiện trên thành:

\[
\begin{cases}
-3(x - 1) + 3y = 0 \\
1(x - 5) + 3y = 0
\end{cases} \Rightarrow \begin{cases}
3x - 3y = 3 \\
x + 3y = 5
\end{cases}
\]

Giải hệ này ta được: \(x = 2, y = 1\)
Vậy: \(H(2; 1)\)

c.) \(A'\) là chân đường cao hạ từ \(A\) xuống cạnh \(BC\) nên:

\[
\begin{cases}
\overrightarrow{AA'} \cdot \overrightarrow{BC} = 0 \\
\overrightarrow{BA'} \cdot \overrightarrow{BC} = 0
\end{cases}
\]

Mà: \(\overrightarrow{AA'} = (x - 1; y); \quad \overrightarrow{BC} = (-3; 3); \quad \overrightarrow{BA'} = (x - 5; y)\)
Nên điều kiện trên thành:

\[
\begin{cases}
-3(x - 1) + 3y = 0 \\
3(x - 5) + 3y = 0
\end{cases} \Rightarrow \begin{cases}
x - y = 1 \\
x + y = 5
\end{cases}
\]

Giải hệ này ta được: \(x = 3, y = 2\)
Vậy: \(A'(3; 2)\)

d.) \(I\) là tâm đường tròn nội tiếp tam giác \(ABC\) nên:

\[
\begin{cases}
IA = IB \\
IA = IC
\end{cases} \Rightarrow \begin{cases}
IA^2 = IB^2 \\
IA^2 = IC^2
\end{cases}
\]

\[
\begin{cases}
(x - 1)^2 + y^2 = (x - 5)^2 + y^2 \\
(x - 1)^2 + y^2 = (x - 3)^2 + (y - 3)^2
\end{cases} \Rightarrow \begin{cases}
8x - 24 = 0 \\
x + 3y = 6
\end{cases}
\]

Giải hệ này ta được: \(x = 3; y = 1\)
Vậy: \(I(3;1)\)

2. Cho tam giác \(ABC\) với \(A(1; 3), B(-4; -5), C(4; -1)\). Tìm tọa độ các điểm sau của tam giác:

a.) Chân \(D\) của đường phân giác trong góc \(A\) trên cạnh \(BC\).
b.) Chân \(D'\) của đường phân giác ngoài góc \(A\) trên cạnh \(BC\).
c.) Tâm \(I\) của đường tròn nội tiếp.

Giải

Gọi \((x; y)\) là tọa độ của điểm cần tìm.

a.) \(D\) là chân đường phân giác trong góc \(A\) trên cạnh \(BC\) nên \(D\) chia đoạn \(BC\) theo tỷ số:

\[
k = -\frac{AB}{AC} = -\frac{\sqrt{(1 + 4)^2 + (5 + 5)^2}}{\sqrt{(4 - 1)^2 + (5 + 5)^2}} = -\frac{5\sqrt{5}}{3\sqrt{5}} = -\frac{5}{3}
\]

Do đó tọa độ của \(D\) là:
\[
x = \frac{x_a - kx_c}{1 - k} = \frac{-4 + \frac{5}{3} \cdot 4}{1 - \frac{5}{3}} = 1;
\]
\[
y = \frac{y_a - ky_c}{1 - k} = \frac{-5 + \frac{5}{3} \cdot (-1)}{1 - \frac{5}{3}} = -\frac{5}{2}
\]

b.) D’ là chân đường phân giác ngoài góc A trên cạnh BC nên D’ chia đoạn BC theo tỷ số: \(l = \frac{AB}{AC} = \frac{5}{3} \)

Do đó tọa độ của D’ là:
\[
x = \frac{x_a - lx_c}{1 - l} = \frac{-4 - \frac{5}{3} \cdot 4}{1 - \frac{5}{3}} = 16;
\]
\[
y = \frac{y_a - ly_c}{1 - l} = \frac{-5 - \frac{5}{3} \cdot (-1)}{1 - \frac{5}{3}} = 5
\]

c.) J là tâm đường tròn nội tiếp tam giác ABC nên BJ là đường phân giác trong góc B trong tam giác BAC. Ta có J là chân đường phân giác trong góc B trên cạnh AD nên J chia đoạn AD theo tỷ số:
\[
h = -\frac{BA}{BD} = -2
\]

Do đó tọa độ của J là:
\[
x = \frac{x_a - hx_c}{1 - h} = \frac{1 + 2.1}{1 + 2} = 1;
\]
\[
y = \frac{y_a - hy_c}{1 - h} = \frac{5 + 2(-2)}{1 + 2} = 0
\]

3. Cho ba điểm: A(-3; 3), B(-5; 2), C(1; 1)

a.) Chứng tỏ A, B, C là 3 đỉnh của một tam giác.
b.) Chứng tỏ BAC là góc tù.
c.) Tính diện tích tam giác ABC.
d.) Tính bán kính r của đường tròn nội tiếp tam giác ABC.

Giải

a.) Ta có: \(\overline{AB} = (-2; -1), \overline{AC} = (4; -2) \)

Và: \((-2),(-2) - (-1),4 = 8 \neq 0 \)

Nên \(\overline{AB} \) và \(\overline{AC} \) không cùng phương, tức là ba điểm A, B, C không thẳng hàng. Do có A, B, C là 3 đỉnh của một tam giác.

Ta có: \(\cos \hat{BAC} = \cos(\overline{AB}, \overline{AC}) = \frac{(-2).4 + (-1).(-2)}{\sqrt{(-2)^2 + (-1)^2} \cdot \sqrt{4^2 + (-2)^2}} = -\frac{3}{5} < 0. \)

Nên BAC là góc tù.
b.) Diện tích tam giác ABC:
\[
S = \frac{1}{2} AB. AC. \sin \hat{BAC} = \frac{1}{2} AB. AC. \sqrt{1 - \cos^2 \hat{BAC}} = \frac{1}{2} \sqrt{5} \cdot \sqrt{20} \cdot \sqrt{1 - \frac{9}{25}} = 4(\text{dvt})
\]

c.) Ta có: \(S = pr \)

Mà: \(p = \frac{1}{2} (AB + BC + CA) = \frac{1}{2} (\sqrt{5} + \sqrt{37} + 2\sqrt{5}) = \frac{1}{2} (3\sqrt{5} + \sqrt{37}) \)

Nên: \(r = \frac{S}{p} = \frac{4}{\frac{1}{2} (3\sqrt{5} + \sqrt{37})} = \frac{8(3\sqrt{5} - \sqrt{37})}{(3\sqrt{5} + \sqrt{37})(3\sqrt{5} - \sqrt{37})} = 3\sqrt{5} - \sqrt{37} \)
4. Chứng minh các bất đẳng thức:

a.) \(\sqrt{4\cos^2 x \cos^2 y + \sin^2 (x - y)} + \sqrt{4\sin^2 x \sin^2 y + \sin^2 (x - y)} \geq 2, \forall x, y\)

b.) \(\sqrt{x^2 + xy + y^2} + \sqrt{x^2 + xz + z^2} \geq \sqrt{y^2 + yz + z^2}, \forall x, y, z\)

Giải

a.) Trong hệ tọa độ Oxy:
Với mọi \(x, y\) xét hai vectơ:
\[\vec{a} = (2\cos x \cos y; \sin (x - y)); \quad \vec{b} = (2\sin x \sin y; \sin (x - y))\]
Ta có: \(\vec{a} + \vec{b} = (2\cos (x - y); 2\sin (x - y))\)
Vậy: \(|\vec{a}| + |\vec{b}| \geq |\vec{a} + \vec{b}|\)
Nên:
\[\sqrt{4\cos^2 x \cos^2 y + \sin^2 (x - y)} + \sqrt{4\sin^2 x \sin^2 y + \sin^2 (x - y)} \geq 2, \forall x, y\]
Trong hệ tọa độ Oxy:
Với mọi \(x, y, z\), xét hai vectơ:
\[\vec{a} = (x + \frac{y}{2}; \frac{y\sqrt{3}}{2}); \quad \vec{b} = (x + \frac{z}{2}; \frac{z\sqrt{3}}{2})\]
Ta có: \(\vec{a} - \vec{b} = (\frac{y}{2} - \frac{z}{2}; \frac{y\sqrt{3}}{2} + \frac{z\sqrt{3}}{2})\)
Vậy: \(|\vec{a}| + |\vec{b}| \geq |\vec{a} - \vec{b}|\)
Nên:
\[\sqrt{(x + \frac{y}{2})^2 + (\frac{y\sqrt{3}}{2})^2} + \sqrt{(x + \frac{z}{2})^2 + (\frac{z\sqrt{3}}{2})^2} \geq \sqrt{(\frac{y}{2} - \frac{z}{2})^2 + (\frac{y\sqrt{3}}{2} + \frac{z\sqrt{3}}{2})^2}\]
Hay: \(\sqrt{x^2 + xy + y^2} + \sqrt{x^2 + xz + z^2} \geq \sqrt{y^2 + yz + z^2}; \forall x, y, z\)

5. Tìm giá trị nhỏ nhất của hàm số:
\[y = \sqrt{\cos^2 \alpha - 2 \cos \alpha + 2} + \sqrt{\cos^2 \alpha + 6 \cos \alpha + 13}\]

Giải
Ta có: \(y = \sqrt{(1 - \cos \alpha)^2 + 1 + (\cos \alpha + 3)^2 + 4}\)
Trong hệ tọa độ Oxy, xét hai vectơ: \(\vec{a} = (1 - \cos \alpha; 1)\) và \(\vec{b} = (\cos \alpha + 3; 2), \alpha \in \mathbb{R}\)
Thì: \(\vec{a} + \vec{b} = (4; 3)\)
Vậy áp dụng bất đẳng thức tam giác ta được:
\[y = |\vec{a}| + |\vec{b}| \geq |\vec{a} + \vec{b}| = \sqrt{4^2 + 3^2} = 5, \forall \alpha\]
\[y = 5 \iff \vec{a} và \vec{b} cùng hướng \iff \exists k > 0: \vec{a} = k\vec{b}\]
TRƯỜNG THCS VÀ THPT LẠC HỒNG

CHỦ BIỂN: T. TRƯƠNG QUANG NGỌC-T.HOÀNG HỮU VINH

\[\begin{align*}
1 - \cos \alpha &= k(\cos \alpha + 3) \\
1 &= 2k
\end{align*} \]

\[\begin{align*}
\cos \alpha &= -\frac{1}{3} \\
k &= \frac{1}{2}
\end{align*} \]

Vậy: \(\min y = 5 \)

C. CÁC BÀI TẬP THỰC HÀNH

1. Cho ba điểm: A(1; -2), B(0; 4), C(3; 2). Tìm điểm D sao cho:
 a.) \(\overrightarrow{CD} = 2\overrightarrow{AB} - 3\overrightarrow{AC} \)
 b.) \(\overrightarrow{AD} + 2\overrightarrow{BD} - 4\overrightarrow{CD} = 0 \)
 c.) ABCD là hình bình hành
 d.) D \(\in \) Ox và ABCD là hình thang đáy là AB.

2. Cho điểm A(3; 1). Tìm các điểm B và C sao cho OABC là hình vuông và điểm B nằm trong góc tọa độ thứ nhất.

3. Cho một tam giác có trung điểm các cạnh là: M(1; 4), N(3; 0), P(-1; 1). Tìm tọa độ các đỉnh của tam giác.

4. Cho hai điểm A(1; -1), B(4; 3). Tìm tọa độ những điểm M, N chia AB thành ba đoạn bằng nhau.

5. Cho tam giác ABC có A(-1; 2), B(2; 1) và trục tâm H(1; 2). Tìm tâm I của đường tròn ngoại tiếp.

6. Cho tam giác đều ABC có A(2; 1) và B(-1; 2). Tìm đỉnh C.

7. Cho hai điểm A(-3; 2) và B(1; 1). Tìm điểm M trên Oy sao cho:
 a.) Diện tích tam giác ABM là 3.
 b.) \(MA^2 + MB^2 \) đạt giá trị nhỏ nhất.

8. Cho hai điểm A(1; -1) và B(3; 2). Tìm điểm M trên Oy sao cho:
 a.) \(AM \hat{B} = 45^\circ \) b.) \(AM \hat{B} \) nhỏ nhất

9. Chứng minh các bất đẳng thức:
 a.) \(\sqrt{x^2 - 2x - 5} + \sqrt{x^2 + 2x + 5} \geq 2\sqrt{5}, \forall x \)
 b.) \(\sqrt{x^2 + 4} + \sqrt{x^2 - 2xy + y^2 + 1} + \sqrt{y^2 - 6y + 10} \geq 5, \forall x, y \)
 c.) \(\sqrt{2(x + y) + 6} + \sqrt{22 - 6(x + y)} \geq 4\sqrt{2}, \forall x, y \)
 với mọi x, y
 thỏa \(x^2 + y^2 = 4 \)
 d.) \(\sqrt{(a - b)^2 + c^2} + \sqrt{(a + b)^2 + c^2} \geq 2\sqrt{a^2 + b^2}, a, b, c \in R \)

10. Tìm giá trị nhỏ nhất của hàm số:

\[y = \sqrt{x^2 - 2x + 2} + \sqrt{x^2 - 8x + 32} \]

ĐÁP SÓ

1. a.) (-5; -2) b.) (11; 2) c.) (4; -4) d.) (\frac{10}{3}; 0)
2. B(2; 4), C(-1; 3)
3. (-3; 5), (5; 3), (1; -3)
4. M(2; \frac{1}{3}), N(3; \frac{5}{3})
5. I(1; 3)
6. C_1(\frac{1+\sqrt{3}}{2}; \frac{3+3\sqrt{3}}{2}), C_2(\frac{1-\sqrt{3}}{2}; \frac{3-3\sqrt{3}}{2})
7. a.) M_1(0; \frac{11}{4}), M_2(0; -\frac{1}{4}) b.) M(0; \frac{3}{2})
8. a.) M_1(0; -1), M_2(0; 4) b.) M(0; -\frac{5}{2})
10. min y = \sqrt{34}

BÀI 2
ĐƯỜNG THẲNG

A. TÓM TẮT LÝ THUYẾT
I. PHƯƠNG TRÌNH CỦA ĐƯỜNG THẲNG
1.) Vectơ chỉ phương:
Một vectơ \(\vec{u} \neq \vec{0} \) được gọi là một vectơ chỉ phương của đường thẳng (\(\Delta \)) nếu giá trị của \(\vec{u} \) song song hoặc trùng với (\(\Delta \)).

2.) Phương trình thanh số của đường thẳng đi qua điểm \(M_0(x_0; y_0) \) và nhận vectơ \(\vec{u} = (u_1; u_2) \) làm vectơ chỉ phương là:

\[
\begin{align*}
x &= x_0 + tu_1 \\
y &= y_0 + tu_2
\end{align*}
\quad (t \in \mathbb{R})
\]

Chú ý: Nếu đường thẳng (\(\Delta \)) có vectơ chỉ phương \(\vec{u} = (u_1; u_2) \) với \(u_1 \neq 0 \) thì (\(\Delta \)) có hệ số góc: \(k = \frac{u_2}{u_1} \)
3.) Phương trình chính tắc của đường thẳng đi qua điểm M₀(x₀; y₀) và có vector chỉ phương \(\vec{u} = (a; b) \) với a và b khác 0 là:

\[
\frac{x - x₀}{a} = \frac{y - y₀}{b}
\]

4.) Vector pháp tuyến:

Một vector \(\vec{n} \neq \vec{0} \) được gọi là một vector pháp tuyến của đường thẳng (\(\Delta \)) nếu \(\vec{n} \) vuông góc với vector chỉ phương của (\(\Delta \)).

5.) Phương trình của đường thẳng đi qua điểm M₀(x₀; y₀) và có vector pháp tuyến \(\vec{n} = (a; b) \) là:

\[a(x - x₀) + b(y - y₀) = 0 \]

6.) Phương trình tổng quát của đường thẳng:

\[ax + by + c = 0 \quad (a² + b² \neq 0) \]

Ta có: \(\vec{n} = (a; b) \) là một vector pháp tuyến, còn \(\vec{u} = (b; -a) \) hoặc \(-\vec{u} = (-b; a) \) là vector chỉ phương của đường thẳng.

7.) Phương trình đường thẳng theo đoạn chắn: phương trình đường thẳng cắt trục Ox tại A(a; 0) và cắt Oy tại B(0; b) với a và b khác 0 là:

\[\frac{x}{a} + \frac{y}{b} = 1 \]

8.) Phương trình đường thẳng theo hệ số góc: \(y = kx + b \)

Trong đó \(k = \tan \alpha \) là hệ số góc của đường thẳng, \(\alpha \) là góc giữa tia Mt (phần đường thẳng nằm phía trên Ox, M là giao điểm của đường thẳng với Ox) với tia Mx.

9.) Phương trình của đường thẳng đi qua điểm M₀(x₀; y₀) và có hệ số góc bằng k là:

\[y - y₀ = k(x - x₀) \]

II. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG THẲNG

Cho hai đường thẳng:

\((\Delta_1) : ax + by + c₁ = 0 \)

\((\Delta_2) : ax + by + c₂ = 0 \)

Đặt: \(D = \begin{vmatrix} a₁ & b₁ \\ a₂ & b₂ \end{vmatrix} = a₁b₂ - a₂b₁; \ D₁ = \begin{vmatrix} b₁ & c₁ \\ b₂ & c₂ \end{vmatrix} = b₁c₂ - b₂c₁; \)

\(D₂ = \begin{vmatrix} c₁ & a₁ \\ c₂ & a₂ \end{vmatrix} = c₁a₂ - c₂a₁ \)

Ta có:

1.) \((\Delta₁) \) và \((\Delta₂) \) cắt nhau khi và chỉ khi \(D \neq 0 \). Tọa độ giao điểm:

\[x = \frac{D₁}{D}; y = \frac{D₂}{D} \]

2.) \((\Delta₁) // (\Delta₂) \) khi và chỉ khi \(D = 0 \) và \(D₁ \neq 0 \) hay \(D₂ \neq 0 \).
3.) \((\Delta_1) \equiv (\Delta_2)\) khi và chỉ khi \(D = D_x = D_y = 0\).

Đặc biệt nếu \(a_2, b_2, c_2\) khác 0 thì:

1.) \((\Delta_1)\) và \((\Delta_2)\) cắt nhau khi và chỉ khi \(\frac{a_1}{a_2} \neq \frac{b_1}{b_2}\)

2.) \((\Delta_1) \parallel (\Delta_2)\) khi và chỉ khi \(\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}\)

3.) \((\Delta_1) \equiv (\Delta_2)\) khi và chỉ khi \(\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}\)

III. GÓC GIỮA HAI ĐƯỜNG THẲNG

Hai đường thẳng \((\Delta_1)\) và \((\Delta_2)\) cắt nhau tạo thành 4 góc đối với nhau. Số đo của góc bé nhất trong bốn góc đó được gọi là số đo của góc hợp bởi hai đường thẳng \((\Delta_1)\) và \((\Delta_2)\).

Vây nếu \(\varphi\) là góc hợp bởi hai đường thẳng \((\Delta_1)\) và \((\Delta_2)\) thì: \(0^\circ \leq \varphi \leq 90^\circ\).

Góc \(\varphi\) hợp bởi hai đường thẳng:

\((\Delta_1) : a_1x + b_1y + c_1 = 0\)
\((\Delta_2) : a_2x + b_2y + c_2 = 0\)

luôn luôn bằng hoặc bù với góc giữa hai vector pháp tuyến \(\vec{n}_1 = (a_1; b_1)\) và \(\vec{n}_2 = (a_2; b_2)\) của hai đường thẳng nên:

\[
\cos \varphi = |\cos(\vec{n}_1, \vec{n}_2)| = \left| \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1| |\vec{n}_2|} \right| = \left| \frac{|a_1a_2 + b_1b_2|}{\sqrt{a_1^2 + b_1^2} \sqrt{a_2^2 + b_2^2}} \right|
\]

Đi nhiên ta cũng có: \(\cos \varphi = |\cos(\vec{u}, \vec{v})|\), với \(\vec{u}, \vec{v}\) là hai vector pháp của hai đường thẳng.

V. KHÔNG CÁCH TỪ MỘT DIỆM TỚI MỘT ĐƯỜNG THẲNG

Cho điểm \(M_0(x_0; y_0)\) và đường thẳng

\((\Delta) : ax + by + c = 0(a^2 + b^2 \neq 0)\)

Khoảng cách từ điểm \(M_0\) tới đường thẳng \((\Delta)\) là:

\[d(M_0; \Delta) = \left| \frac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}} \right|\]

- Chú ý: Cho hai điểm \(M(x_M; y_M), N(x_N; y_N)\) và đường thẳng \((\Delta) : ax + by + c = 0\)

Ta có:

- \(M\) và \(N\) nằm cùng phía đối với \((\Delta)\) khi và chỉ khi: \((ax_M + by_M + c)(ax_N + by_N + c) > 0\)
- \(M\) và \(N\) nằm cùng phía đối với \((\Delta)\) khi và chỉ khi: \((ax_M + by_M + c)(ax_N + by_N + c) < 0\)

B. BÀI TẬP ÁP DỤNG

1.1.) Cho tam giác ABC biết A(1; 3), B(-1; 2), C(5; 1). Viết phương trình của:

a.) Đường cao AH.

b.) Đường trung trực \((\Delta)\) của cạnh BC.
2.) Cho đường thẳng (D): \(3x - 4y + 1 = 0\) và điểm M(3; 2). Viết phương trình của đường thẳng (D') một khoảng bằng 4 trong các trường hợp sau:

a.) (D') nằm trong nửa mặt phẳng giới hạn bởi (D) chứa M.
b.) (D') nằm trong nửa mặt phẳng giới hạn bởi (D) không chứa M.

Giải

1.) a.) Ta có:

\[M (x; y) \in AH \Leftrightarrow \overline{AM}.\overline{BC} = 0\]

Mà:

\[\overline{AM} = (x - 1; y - 3), \overline{BC} = (6; -1)\]

Nên:

\[M (x; y) \in AH \Leftrightarrow 6(x - 1) - 1(y - 3) = 0\]

\[\Leftrightarrow 6x - y - 3 = 0\]

Vậy phương trình đường cao AH là: \(6x - y - 3 = 0\)

b.) Ta có: \(N(x, y) \in (\Delta)\)

\[\Leftrightarrow \overline{NB} = \overline{NC}\]

\[\Leftrightarrow \sqrt{(x + 1)^2 + (y - 2)^2} = \sqrt{(x - 5)^2 + (y - 1)^2}\]

\[\Leftrightarrow (x + 1)^2 + (y - 2)^2 = (x - 5)^2 + (y - 1)^2\]

\[\Leftrightarrow 12x - 2y - 21 = 0\]

Vậy phương trình đường trung trực (\(\Delta\)) của cạnh BC là: \(12x - 2y - 21 = 0\)

2.) a.) Ta có:

\[N(x_N; y_N) \in (D') \Leftrightarrow \begin{cases} (3x_N - 4y_N + 1)(3x_M - 4y_M + 1) < 0 \\ d(N, (D)) = 4 \end{cases}\]

\[\Leftrightarrow \begin{cases} 2(3x_N - 4y_N + 1) < 0 \\ \frac{|3x_N - 4y_N + 1|}{5} = 4 \end{cases}\]

\[\Leftrightarrow 3x_N - 4y_N - 19 = 0\]

Nên phương trình của (D') là: \(3x - 4y - 19 = 0\)

b.) Ta có:

\[N(x_N; y_N) \in (D') \Leftrightarrow \begin{cases} (3x_N - 4y_N + 1)(3x_M - 4y_M + 1) > 0 \\ d(N, (D)) = 4 \end{cases}\]

\[\Leftrightarrow \begin{cases} 2(3x_N - 4y_N + 1) > 0 \\ \frac{|3x_N - 4y_N + 1|}{5} = 4 \end{cases}\]

\[\Leftrightarrow 3x_N - 4y_N + 21 = 0\]

Nên phương trình của (D') là: \(3x - 4y + 21 = 0\)

2. 1.) Viết phương trình ba cạnh của tam giác ABC biết trung điểm ba cạnh AB, BC, AC lần lượt là: M(2; 1), N(5; 3), P(3; -4)

2.) Cho tam giác ABC biết A(-2; 1), B(2; 5), C(4; 1). Viết phương trình của:
a.) Đường cao BH.
b.) Đường trung trực của cạnh AB.

Giải

1.) Theo tính chất đường trung bình của tam giác ta có: NP//AB.

Cảnh AB chính là đường thẳng đi qua M(2; 1) nhận $\overrightarrow{NP} = (-2; -7)$ làm vector chỉ phương nên có phương trình là:

$$\frac{x - 2}{-2} = \frac{y - 1}{-7} \Rightarrow 7x - 2y - 12 = 0$$

Tương tự phương trình các cạnh BC và AC lần lượt là:

$$5x + y - 28 = 0$$

$$2x - 3y - 18 = 0$$

2.) a.) Đường cao BH chính là đường thẳng qua B(2; 5) nhận $\overrightarrow{AC} = (6; 0)$ làm vector pháp tuyến.

Vậy phương trình của đường cao BH là:

$$6(x - 2) = 0$$

b.) Đường trung trực với cạnh AB tại trung điểm I (0; 3). Nhận $\overrightarrow{AB} = (4; 4)$ làm vector pháp tuyến.

Vậy phương trình của đường trung trực cạnh AB là:

$$4(x - 0) + 4(y - 3) = 0$$

3. 1.) Cho tam giác ABC biết A(1; 3), B(-1; 2), C(5; 1). Viết phương trình của:

a.) Các cạnh của tam giác.
b.) Đường trung tuyến AM.
c.) Đường phân giác trong AD của góc A.
d.) Đường phân giác ngoài AD’ của góc A.

2.) Cho tam giác ABC có A(3; 3), B(2; -1), C(11; 2). Viết phương trình đường thẳng qua A và chia tam giác ABC thành hai tam giác có tỷ số diện tích bằng 2.

Giải

1.) a.) Cạnh AB chính là đường thẳng đi qua A(1; 3) nhận $\overrightarrow{AB} = (-2; -1)$ làm vector chỉ phương. Vậy phương trình của cạnh AB là:

$$\frac{x - 1}{-2} = \frac{y - 3}{-1} \Rightarrow x - 2y + 5 = 0$$

Tương tự: Phương trình cạnh AC: $x + 2y - 7 = 0$

Phương trình cạnh BC: $x + 6y - 11 = 0$
b.) Tọa độ trung điểm M của cạnh BC là M (2; \frac{3}{2})

Đường trung tuyến AM chính là đường thẳng đi qua hai điểm A và M, nên tương tự câu a.) phương trình của đường trung tuyến AM là:

\[3x + 2y - 9 = 0 \]

c.) Tương tự câu a.) của ví dụ 2 trang 3, ta tìm được D(1; \frac{5}{3})

Đường phân giác trong góc A chính là đường thẳng đi qua hai điểm A và M nên tương tự câu a.) ta có phương trình của đường phân giác trong AD là:

\[x - 1 = 0 \]

d.) Tương tự câu b.) của ví dụ 2 trang 3 ta tìm D'(-7; 3)

Đường phân giác ngoài góc A chính là đường thẳng đi qua hai điểm A và D nên tương tự câu a.) ta có phương trình của đường phân giác ngoài AD' là:

\[y = -3 \]

2.) Gọi D là giao điểm của đường thẳng cần tìm với cạnh BC và hà AH\perp BC. Ta có hai trường:

a.) \[\frac{S(\triangle ABD)}{S(\triangle ACD)} = 2 \]

Suy ra: \[\frac{BD}{CD} = 2 \]

Vậy D chia cạnh BC theo tỷ số k = -2 nên tọa độ của D là:

\[x = \frac{x_B - kx_C}{1-k} = \frac{11 + 2.2}{1+2} = 8, \quad y = \frac{y_B - ky_C}{1-k} = \frac{-1 + 2.2}{1+2} = 1 \]

Phương trình của đường thẳng cần tìm chính là phương trình của đường thẳng đi qua hai điểm A(3; 3) và D(8; 1). Nên tương tự câu 1.2) ta có phương trình của đường thẳng này là:

\[2x + 5y - 21 = 0 \]

Tương tự ta có phương trình đường thẳng cần tìm là: \[3x + 2y - 15 = 0 \]

b.) \[\frac{S(\triangle ACD)}{S(\triangle BCD)} = 2 \]

\[\frac{CD}{BD} = 2 \]

Vậy D chia cạnh CB theo tỷ số k = -2 nên tọa độ của D là:

\[x = \frac{x_C - kx_B}{1-k} = \frac{11 + 2.2}{1+2} = 5, \quad y = \frac{y_C - ky_B}{1-k} = \frac{2 + 2(-1)}{1+2} = 0 \]

4. 1.) Viết phương trình của đường thẳng đi qua điểm M(2; 1) và tạo với đường thẳng (D): \[2x + 3y + 4 = 0 \] một góc 135°

2.) Một tam giác cân có cạnh đáy và một cạnh bên có phương trình lần lượt là: \[3x - y + 5 = 0; \quad x + 2y - 1 = 0 \]

Viết phương trình của cạnh bên còn lại biết rằng nó đi qua điểm M(1; -3)
3.) Viết phương trình của đường thẳng đi qua điểm P(2; 5) sao cho khoảng cách từ điểm Q(5; 1) đến đường thẳng đó bằng 3.

Giải

1.) Gọi $\vec{n} = (a;b) \neq \vec{0}$ là một vector pháp tuyến của đường thẳng đi qua M(2; 1) thì phương trình của đường thẳng có dạng:

$$a(x - 2) + b(y - 1) = 0 \iff ax + by - (2a + b) = 0$$

Đường thẳng này tạo với đường thẳng (D) một góc 45^0, tức là tạo với (D) một góc 135^0, nên:

$$\cos 45^0 = \frac{|2a + 3b|}{\sqrt{2} \cdot \sqrt{a^2 + b^2}} \iff \frac{\sqrt{2}}{2} = \frac{|2a + 3b|}{\sqrt{13a^2 + b^2}}$$

$$\iff \sqrt{26(a^2 + b^2)} = 2|2a + 3b| \iff 26(a^2 + b^2) = 4(2a + 3b)^2$$

$$\iff 5a^2 - 24ab - 5b^2 = 0$$

Xem dạng thức này như phương trình bậc 2 theo a, giải ra ta được:

$$a = 5b \vee a = -\frac{b}{5}$$

Vậy có thể chọn: $a = 5$, $b = 1$ và $b = -5$, $a = 1$

Ta được phương trình của đường thẳng cần tìm là:

$$5x + y - 11 = 0 \quad \text{hay} \quad x - 5y + 3 = 0$$

2.) Gọi $\vec{n} = (a;b) \neq \vec{0}$ là một vector pháp tuyến của cạnh bên đi qua M(1; -3) thì phương trình cạnh bên này có dạng:

$$a(x - 1) + b(y + 3) = 0 \iff ax + by + (3b - a) = 0$$

Tam giác cân có góc tạo thành bởi hai cạnh ben với dây bằng nhau nên:

$$\frac{|3a-b|}{\sqrt{31}} = \frac{|3a-1.2|}{\sqrt{1.2}} \iff 5|3a-b| = \sqrt{a^2 + b^2}$$

$$\iff 22a^2 - 15ab + 2b^2 = 0$$

Xem dạng thức này như phương trình bậc hai theo a, giải ra ta được:

$$a = \frac{b}{2} \vee a = \frac{2b}{11}$$

Vậy có thể chọn: $b = 2$, $a = 1$ và $b = 11$, $a = 2$

Với $a = 1$, $b = 2$ ta có đường thẳng $x + 2y + 5 = 0$, song song với cạnh bên đã cho nên không thể là cạnh bên của tam giác.

Với $a = 2$, $b = 11$ ta có phương trình của cạnh bên còn lại của tam giác là:

$$2x + 11y + 31 = 0$$

3.) Gọi $\vec{n} = (a;b) \neq \vec{0}$ là một vector pháp tuyến của đường thẳng đi qua P(2; 5) thì phương trình của đường thẳng có dạng:

$$a(x - 2) + b(y - 5) = 0 \iff ax + by - (2a + 5b) = 0$$

Khoảng cách từ Q(5; 1) đến đường thẳng này bằng 3 nên:

$$\frac{|5a+b-(2a+5b)|}{\sqrt{a^2 + b^2}} = 3 \iff |3a-4b| = 3\sqrt{a^2 + b^2} \iff (3a-4b)^2 = 9(a^2 + b^2)$$
Với $b = 0$ thì $a \neq 0$ nên phương trình đường thẳng là: $x - 2 = 0$.
Với $7b = 24a$ ta có thể chọn $b = 24$, $a = 7$. Và phương trình của đường thẳng là:

$$7x + 24y - 134 = 0$$

5.) 1.) Viết phương trình đường thẳng đi qua điểm $M(1; 2)$ cắt trục hoành và trục tung lần lượt tại A và B khác gốc 0 sao cho: $OA = OB$.
2.) Viết phương trình đường thẳng qua $N(1; 3)$ cắt hai nửa trục dương Ox, Oy tại P và Q sao cho tam giác OPQ có diện tích nhỏ nhất.

Giải

1.) Gọi $\vec{n} = (a; b) \neq 0$ là một vector pháp tuyến của đường thẳng qua $M(1; 2)$ thì phương trình của đường thẳng là:

$$a(x - 1) + b(y - 2) = 0 \iff ax + by - (a + 2b) = 0$$

Vì đường thẳng cắt Ox và Oy tại A và B khác gốc 0 nên ta có: $a \neq 0 \neq b$ và $a + 2b \neq 0$.

Hoành độ giao điểm A: $y = 0 \Rightarrow x_A = \frac{a + 2b}{a}$.
Tung độ giao điểm B: $x = 0 \Rightarrow y_B = \frac{a + 2b}{b}$

Ta có: $OA = OB \iff |x_A| = |x_B| \iff \left|\frac{a + 2b}{a}\right| = \left|\frac{a + 2b}{b}\right| \iff \left|\frac{a}{a}\right| = \left|\frac{b}{b}\right| \iff a = \pm b$.

a.) $a = b$: Phương trình đường thẳng là: $x + y - 3 = 0$.
b.) $a = -b$: Phương trình đường thẳng là: $x - y + 1 = 0$.

2.) Gọi $\vec{n} = (a; b)$ với $a > 0$, $b > 0$ là một vector pháp tuyến của đường thẳng đi qua $N(1; 3)$ thì phương trình của đường thẳng là:

$$a(x - 1) + b(y - 3) = 0 \iff ax + by - (a + 3b) = 0$$

Hoành độ giao điểm P: $y = 0 \Rightarrow x_P = \frac{a + 3b}{a} > 0$.
Tung độ giao điểm Q: $x = 0 \Rightarrow y_Q = \frac{a + 3b}{b} > 0$.

Diện tích tam giác OPQ:

$$S = \frac{1}{2} OP.OQ = \frac{1}{2} |x_P|.|y_Q| = \left|\frac{(a + 3b)^2}{2ab}\right| = \frac{a^2 + 9b^2 + 6ab}{2ab} = \frac{a}{2b} + \frac{9b}{2a} + 3$$

Áp dụng bất đẳng thức Cauchy ta có:

$$\frac{a}{2b} + \frac{9b}{2a} \geq 2\sqrt{\frac{a}{2b} \cdot \frac{9b}{2a}} = 3$$

Vậy: $S \geq 6$

Và: $S = 6 \iff \frac{a}{2b} = \frac{9b}{2a} \iff a^2 = 9b^2 \iff a = 3b$ (vì $a > 0$, $b > 0$)
Nên: \(\min S = 6 \), đặt được khi: \(a = 3b \).

Lúc đó chọn: \(b = 1 \) thì \(a = 3 \) và ta được phương trình của đường thẳng là: \(3x + y - 6 = 0 \)

6. 1.) Viết phương trình của đường thẳng \((D_2)\) đối xứng với đường thẳng \((D_1): 2x + 4y + 5 = 0\) qua điểm \(M(1; 2)\)

2.) Viết phương trình của đường thẳng \((D_2)\) đối xứng với đường thẳng \((D_1): 2x - 2y - 1 = 0\) qua đường thẳng \((D): x - y - 3 = 0\)

Giải

1.) Đường thẳng \((D_2)\) đối xứng với \((D_1)\) qua M nên \((D_2)//(D_1).\) Vây phương trình của \((\Delta_2)\) có dạng:
\[2x + 4y + c = 0 \]

Mặt khác:
\[d(M, D_2) = d(M, D_1) \iff \frac{|10 + c|}{\sqrt{2^2 + 4^2}} = \frac{15}{\sqrt{2^2 + 4^2}} \iff C + 10 = \pm 15 \iff C = 5, \ C = -25 \]

Với \(C = 5 \) thì \((D_2)\) = \((D_1),\) không nhận được.

Với \(C = -25 \) thì phương trình của \((D_2) \) là: \(2x + 4y - 25 = 0\)

2.) Các đường thẳng \((D_1)\) và \((D)\) song song với nhau nên \((D_2)\) đối xứng với \((D_1)\) qua \((D)\) thì \((D_2)//(D_1)\)

Vậy phương trình của \((D_2)\) có dạng: \(2x - 2y + c = 0\)

Trong phương trình của \((D)\) cho \(y = 0 \) ta được \(x = 3.\)

Nên điểm \(I(3; 0) \in (D).\)

Ta có: \(d(I; D_2) = d(I; D_1) \)
\[\iff \frac{|6 + c|}{\sqrt{2^2 + (-2)^2}} = \frac{5}{\sqrt{2^2 + (-2)^2}} \iff |C + 6| = 5 \iff C + 6 = \pm 5 \iff C = -1, \ C = -11 \]

Với \(C = -1 \) ta có \((D_2)\) = \((D_1)\) nên không nhận được.

Với \(C = -11 \) ta có phương trình của \((D_2) \) là: \(2x - 2y - 11 = 0.\)

7. Viết phương trình của đường thẳng \((D)\) cách \(A(1; 1) \) một khoảng bằng 2 và cách \(B(2; 3) \) một khoảng bằng 4.

Giải

Phương trình tổng quát của đường thẳng \((D)\):
\[ax + by + c = 0. \quad (a^2 + b^2 \neq 0) \]

Ta có:
\[
\begin{align*}
\left\{
\begin{array}{l}
\frac{|a + b + c|}{\sqrt{a^2 + b^2}} = 2. \\
\frac{|2a + 3b + c|}{\sqrt{a^2 + b^2}} = 4.
\end{array}
\right. \\
\iff \left\{
\begin{array}{l}
|a + b + c| = 2\sqrt{a^2 + b^2}.

\left| 2a + 3b + c \right| = 4\sqrt{a^2 + b^2}.
\end{array}
\right.
\end{align*}
\]
Cho hai đường thẳng

Ta xem hệ gồm hai phương trình của

cắt nhau tại I

Giải

a.) Xét hệ gom hai phương trình của (Δ₁) và (Δ₂). Ta có:

\[D = (m - 2)(2m - 3) - (m - 4)(m - 6) = m² - 3m - 18 = (m + 6)(m - 3) \]

\[D_x = \frac{(m - 6)(m - 3) - (2m - 3)(m - 1)}{2} = m² - 6m + 27 \]

\[D_y = m² - 1(m - 4) - (m - 5)(m - 2) = 2(m - 3) \]

Nên: \(D = 0 \Leftrightarrow m = -6 \) v \(m = 3 \).

Vậy:

Nếu \(m = -6 \) và \(m = 3 \) thì \(D = 0 \) nên (Δ₁) và (Δ₂) cắt nhau.

Nếu \(m = -6 \) thì \(D = 0 \) và \(D_x = 27 \neq 0 \) nên (Δ₁) // (Δ₂)

Nếu \(m = 3 \) thì \(D = D_x = D_y = 0 \) nên (Δ₁) trùng (Δ₂)

b.) Nếu \(m = -6 \) và \(m = 3 \) thì (Δ₁) và (Δ₂) cắt nhau tại I.

Ta có:
Suy ra: $2x + 3y = -2$.

Vậy quy tích của I là đường thẳng $(d): 2x + 3y + 2 = 0$, bỏ đi điểm $A\ (\ -1;\ 0)$.

Cho đường thẳng $(\Delta_m): (2m + 1)x + (3m - 2)y + m - 3 = 0$.

Chứng minh rằng khi m thay đổi, (Δ_m) luôn luôn đi qua một điểm cố định.

Giải

Giả sử $I(x_0;\ y_0)$ là điểm cố định của đường thẳng (Δ_m) khi m thay đổi, thì:

$$
\begin{align*}
(2m + 1)x_0 + (3m - 2)y_0 + m - 3 &= 0, \quad \forall m \\
(2x_0 + 3y_0 + 1)m + (x_0 - 2y_0 - 3) &= 0
\end{align*}
$$

Giải hệ này ta được: $x_0 = 1;\ y_0 = -1$.

Vậy khi m thay đổi, (Δ_m) luôn luôn đi qua một điểm cố định $I(1;\ -1)$.

10. Cho họ đường thẳng $(\Delta_m): mx - m^2y - 1 = 0$. Tìm tất cả các điểm trên mặt phẳng Oxy sao cho:

a.) Có một đường thẳng của họ (Δ_m) đi qua.

b.) Không có đường thẳng nào của họ (Δ_m) đi qua.

Giải

Giả sử $I(x_0;\ y_0)$ là điểm cần tìm

a.) Có một đường thẳng của họ (Δ_m) đi qua I khi phương trình theo ẩn số m: $y_0m^2 - x_0m + 1 = 0$ có một nghiệm.

Điều đó xảy ra trong các trường hợp:

$$
\alpha.\ y_0 = 0 \land x_0 \neq 0 \\
\beta.\ \left\{\begin{array}{l}
y_0 \neq 0 \\
\Delta = 0 = 0
\end{array}\right. \implies \left\{\begin{array}{l}
y_0 \neq 0 \\
x_0^2 - 4y_0 = 0
\end{array}\right.
$$

Vậy các điểm cần tìm ở trên trục hoành: $y = 0$ và parabol $y = \frac{x^2}{4}$, bỏ điểm $O(0;0)$.

b.) Không có đường thẳng nào của họ (Δ_m) đi qua I khi phương trình theo ẩn số m: $y_0m^2 - x_0m + 1 = 0$ vô nghiệm

Điều đó xảy ra trong các trường hợp:

$$
\alpha.\ y_0 = x_0 = 0 \\
\beta.\ \left\{\begin{array}{l}
y_0 \neq 0 \\
\Delta < 0 \implies \left\{\begin{array}{l}
y_0 \neq 0 \\
x_0^2 - 4y_0 < 0
\end{array}\right.
\end{array}\right.
$$

Vậy các điểm cần tìm là góc $O(0;\ 0)$ và các điểm thuộc mặt phẳng Oxy giới hạn bởi parabol $y = \frac{x^2}{4}$ gạch chéo trên đồ thị (không kể biên).
11. a.) Tính góc nhọn tạo bởi hai đường thẳng: \(2x - y + 5 = 0\), \(3x + y - 6 = 0\)

 b.) Tính góc tù tạo bởi hai đường thẳng: \(3x - 7y + 26 = 0\), \(2x + 5y - 13 = 0\)

 Giải

a.) Gọi \(\phi\) là góc nhọn tạo bởi hai đường thẳng, ta có:

 \[
 \cos \phi = \frac{|2.3 + (.1)|}{\sqrt{2^2 + (-1)^2}} = \frac{1}{\sqrt{2}}
 \]

 Suy ra: \(\phi = 45^\circ\).

b.) Gọi \(\alpha\) là góc nhọn tạo bởi hai đường thẳng, ta có:

 \[
 \cos \alpha = \frac{|3.2 + (-7)|}{\sqrt{3^2 + (-7)^2}} = \frac{1}{\sqrt{2}}
 \]

 Suy ra: \(\alpha = 45^\circ\)

 Do đó góc tù tạo bởi hai đường thẳng là: \(\beta = 180^\circ - \alpha = 135^\circ\).

12.) Cho đường thẳng \((\Delta): x - 2y + 4 = 0\) và điểm \(A(4;1)\)

a.) Tính khoảng cách từ \(A\) tới \((\Delta)\) và tọa độ hình chiếu của \(A\) xuống \((\Delta)\)

b.) Tìm tọa độ điểm \(A'\) đối xứng với \(A\) qua \((\Delta)\)

 Giải

a.) Khoảng cách từ \(A\) tới \((\Delta)\) là:

 \[
 d(A, \Delta) = \frac{|x_a - 2y_a + 4|}{\sqrt{1^2 + (-2)^2}} = \frac{|4 - 2 + 4|}{\sqrt{5}} = \frac{6\sqrt{5}}{5}
 \]

Gọi \((x_H, y_H)\) là tọa độ của \(H\) ta có:

\[
\begin{cases}
 H \in (\Delta) \\
 \overrightarrow{AH}
\end{cases}
\]

cùng phương với vecto pháp tuyến \(\vec{n} = (1; -2)\) của \((\Delta)\)

Ta có: \(\overrightarrow{AH} = (x_H - 4; y_H - 1)\)

Nên điều kiện trên thành:

\[
\begin{cases}
 x_H - 2y_H + 4 = 0 \\
 -2(x_H - 4) - (y_H - 1) = 0
\end{cases} \iff \begin{cases}
 x_H - 2y_H + 4 = 0 \\
 2x_H + y_H - 9 = 0
\end{cases}
\]

Giải hệ này ta được: \(x_H = \frac{14}{5}; y_H = \frac{17}{5}\)
Vậy: $H\left(\frac{14}{5};\frac{17}{5}\right)$

b.) Gọi $(x;y)$ là tọa độ của A’. Ta có A’ đối xứng với A qua (Δ) nên H là trung điểm của đoạn AA’. Do đó:

$$\begin{align*}
\left\{ \begin{array}{l}
14 &= 4 + x \\
17 &= 1 + x \\
5 &= 2 \\
\end{array} \right. \iff \left\{ \begin{array}{l}
x &= \frac{8}{5} \\
y &= \frac{29}{5} \\
\end{array} \right.
$$

Vậy: $A’\left(\frac{8}{5};\frac{29}{5}\right)$

13. Cho đường thẳng $(\Delta_m): (m-2)x + (m-1)y + 2m - 1 = 0$. Định m để (Δ_m) cắt đoạn thẳng BC với B(2; 3) và C(1; 0)

Giải

Ta có (Δ_m) cắt đoạn thẳng BC khi hai điểm B, C nằm hai bên của đường thẳng (Δ_m). Điều đó xảy ra khi:

$$(m-2)x_B + (m-1)y_B + 2m - 1, (m-2)x_C + (m-1)y_C + 2m - 1 \leq 0 \iff [2(m-2) + 3(m-1) + 2m - 1, (m-2) + 2m - 1] \leq 0 \iff (7m - 8)(3m - 3) \leq 0 \iff 1 \leq m \leq \frac{8}{7}$$

14. a.) Lập phương trình của đường phân giác góc nhỏ hợp bởi hai đường thẳng:

$(\Delta_1): 3x - 4y + 12 = 0; \hspace{1cm} (\Delta_2): 12x + 5y - 7 = 0$

b.) Lập phương trình của đường phân giác góc từ hợp bởi hai đường thẳng:

$(d_1): 4x - 3y + 6 = 0; \hspace{1cm} (d_2): 5x + 12y + 10 = 0$

Giải

a.) Phương trình của đường phân giác của góc hợp bởi (Δ_1) và (Δ_2) là:

$$\left| \frac{3x - 4y + 12}{\sqrt{3^2 + (-4)^2}} \right| = \left| \frac{12x + 5y - 7}{\sqrt{12^2 + 5^2}} \right| \iff \begin{cases} 21x + 77y - 191 = 0, (D_1) \\
99x - 27y + 121 = 0, (D_2) \end{cases}$$

Trong phương trình của đường thẳng (Δ_1) cho $x = 0$ ta được

$y = 3$, nên M(0; 3) là một điểm thuộc (Δ_1) và ta có M không thuộc (Δ_2).

Mặt khác:

$$d(M;(D_1)) = \frac{40}{\sqrt{21^2 + 77^2}} > d(M;(D_2)) = \frac{40}{\sqrt{99^2 + 27^2}}$$

Nên đường phân giác của góc nhỏ hợp bởi hai đường thẳng (Δ_1) và (Δ_2) là $(D_2): 99x - 27y + 121 = 0$

b.) Phương trình của đường phân giác của góc hợp bởi (d_1) và (d_2) là:

$$\left| \frac{4x - 3y + 6}{\sqrt{4^2 + (-3)^2}} \right| = \left| \frac{5x + 12y + 10}{\sqrt{5^2 + 12^2}} \right|$$
Trong phương trình của đường thẳng \((d_1) \) cho \(x = 0 \) ta được \(y = 2 \), nên \(M(0; 2) \) là một điểm thuộc \((d_1) \) và ta có \(M \) không thuộc \((d_2) \)

Mặt khác:

\[
d(M; (D_1)) = \frac{170}{\sqrt{27^2 + 99^2}} < d(M; (D_2)) = \frac{170}{\sqrt{77^2 + 21^2}}
\]

Nên đường phân giác của góc từ hợp bởi hai đường thẳng \((d_1) \) và \((d_2) \) là \((D_2) \):

\[
77x + 21y + 128 = 0
\]

15. Lập phương trình của đường thẳng đi qua điểm \(P(2; -1) \) sao cho đường thẳng đó cùng với hai đường thẳng \((\Delta_1) : 2x - y + 5 = 0; (\Delta_2) : 3x + 6y - 1 = 0 \), tạo ra một cắm giác cân có đỉnh là giao điểm của hai đường thẳng \((\Delta_1) \) và \((\Delta_2) \)

Gải

Đường thẳng cần tìm chính là đường thẳng đi qua \(P \) vuông góc với các đường phân giác của góc hợp bởi \((\Delta_1) \) và \((\Delta_2) \)

Phương trình của các đường phân giác này là:

\[
(d_1) : \frac{2x - y + 5}{\sqrt{2^2 + (-1)^2}} = \frac{3x + 6y - 1}{\sqrt{3^2 + 2^2}}
\]

Hay: \(3x - 9y + 16 = 0 \)

\[
(d_2) : \frac{2x - y + 5}{\sqrt{2^2 + (-1)^2}} = \frac{3x + 6y - 1}{\sqrt{3^2 + 9^2}}
\]

Hay: \(9x + 3y + 14 = 0 \)

Đường thẳng qua \(P \) vuông góc với \((d_1) \) nhận vectơ chỉ phương của \((d_1) \) là \(\vec{u} = (9; 3) \) làm vectơ pháp tuyến nên phương trình là: \(9(x - 2) + 3(y + 1) = 0 \) hay \(3x + y - 5 = 0 \).

Đường thẳng \(P \) vuông góc với \((d_2) \) nhận vectơ chỉ phương của \((d_2) \) là \(\vec{v} = (3; -9) \) làm vectơ pháp tuyến nên phương trình là: \(3(x - 2) - 9(y + 1) = 0 \) hay \(x - 3y - 5 = 0 \)

Tóm lại có hai đường thẳng có phương trình là:

\(3x + y - 5 = 0 \) và \(x - 3y - 5 = 0 \)

16. Cho đường thẳng \((\Delta) : x - 2y - 2 = 0 \) và hai điểm \(A(1; 2) \), \(B(2; 5) \). Tìm điểm \(M \) trên \((\Delta) \) để \(MA + MB \) nhỏ nhất.

Gải

Ta có: \((x_A - 2y_A - 2)(x_B - 2y_B - 2) = (1 - 4 - 2)(2 - 10 - 2) = 50 > 0 \)

Nên hai điểm \(A \) và \(B \) nằm cùng bên đối với \((\Delta) \)

Gọi \(A'(x'; y') \) là điểm đối xứng của \(A \) qua \((\Delta) \), ta có \(\overline{AA'} = (x' - 1; y' - 2) \) cùng phương với vectơ pháp tuyến \(\vec{n} = (1; -2) \) của \((\Delta) \) và trung điểm \(H(\frac{x' + 1}{2}; \frac{y' + 1}{2}) \) của đoạn AA’ ở trên \((\Delta) \) nên:
\[
\begin{align*}
&\quad \begin{cases}
-2(x' - 1) - 1(y' - 2) = 0 \\
\frac{x' + 1}{2} - 2(\frac{y' + 2}{2}) - 2 = 0
\end{cases} \\
\Leftrightarrow \begin{cases}
2x' + y' - 4 = 0 \\
x' - 2y' - 7 = 0
\end{cases}
\end{align*}
\]

Giải hệ này ta được: \(x' = 3\); \(y' = -2\)

Vậy: \(A'(3; -2)\)

Ta có \(A'\) đối xứng với \(A\) qua \((\Delta)\) nên \(MA = MA'\)

Suy ra: \(MA + MB = MA' + MB\)

Trong tam giác \(MA'B\) ta có: \(MA' + MB = A'B\) (không đối)

Vậy: \(MA + MB\) nhỏ nhất bằng \(A'B\) khi điểm \(M\) là giao điểm của \(\Delta\) với đoạn \(A'B\).

Vậy: \(MA + MB\) nhỏ nhất bằng \(A'B\) khi điểm \(M\) là giao điểm của \(\Delta\) với đoạn \(A'B\).

Đường thẳng \(A'B\) chính là đường thẳng đi qua \(A'(3; -2)\) nhân \(\overrightarrow{AB} = (-4; 7)\) làm vectơ chỉ phương nên phương trình là:

\[
\frac{x - 3}{-1} = \frac{y + 2}{7} \iff 7x + y - 19 = 0
\]

Vậy toa độ của \(M\) là nghiệm của hệ:

\[
\begin{cases}
x - 2y - 2 = 0 \\
7x + y - 19 = 0
\end{cases}
\]

Giải hệ này ta được: \(x = \frac{8}{3}\); \(y = \frac{1}{3}\)

Vậy: \(M\left(\frac{8}{3}; \frac{1}{3}\right)\)

17. Cho đường thẳng \((\Delta): x - 3y - 1 = 0\) và hai điểm \(A(5; 3), B(2; -3)\). Tìm điểm \(M\) trên \((\Delta)\) để \(|MA - MB|\) lớn nhất.

\textbf{Giải}

Ta có: \(x_a - x_b + 1(x_a - 3y_a - 1) = (5 - 9 - 1)(2 + 9 - 1) = -50 < 0\)

Nên hai điểm \(A\) và \(B\) nằm hai bên \((\Delta)\)

Gọi \(A'(x'; y')\) là điểm đối xứng của \(A\) qua \((\Delta)\), ta có \(\overrightarrow{AA'} = (x' - 5; y' - 3)\) cùng phương với vectơ pháp tuyến \(\overrightarrow{n} = (1; -3)\) của \((\Delta)\) và trung điểm \(H\left(\frac{x' + 5}{2}; \frac{y' + 3}{2}\right)\) của đoạn \(AA'\) ở trên \((\Delta)\) nên:

\[
\begin{align*}
&\quad \begin{cases}
-3(x' - 5) - 1(y' - 3) = 0 \\
\frac{x' + 5}{2} - 3(\frac{y' + 3}{2}) - 1 = 0
\end{cases} \\
\Leftrightarrow \begin{cases}
3x' + 4y' - 18 = 0 \\
x' - 3y' - 6 = 0
\end{cases}
\end{align*}
\]

Giải hệ này ta được: \(x' = 6\); \(y' = 0\)

Vậy: \(A'(6; 0)\)

Ta có \(A'\) đối xứng với \(A\) qua \((\Delta)\) nên \(MA = MA'\)
Suy ra: $|MA - MB| = |MA' - MB|

Trong tam giác MA'B ta có: $|MA' - MB| \leq A'B$ (không đổi)

Và: $|MA' - MB| = A'B$ khi M ở ở trên đường thẳng A'B nhưng không ở giữa A' và B, mặt khác M $\in (\Delta)$ nên M chính là giao điểm của (Δ) với phần đường thẳng A'B đó.

Vậy MA + MB nhỏ nhất bằng A'B khi điểm M là giao điểm này cùng chính là giao điểm của (Δ) với đường thẳng A'B.

Đường thẳng A'B chính là đường thẳng đi qua A'(6; 0) nhận $A'B = (-4; -3)$ làm vectơ chỉ phương nên phương trình là:

$$
\frac{x - 6}{-4} = \frac{y - 0}{-3} \iff 3x - 4y - 18 = 0
$$

Vậy tọa độ của M là nghiệm của hệ:

$$
\begin{cases}
 x - 3y - 1 = 0 \\
 3x - 4y - 18 = 0
\end{cases}
$$

Giải hệ này ta được: $x = 10, y = 3$

Vậy: $M(10; 3)$

18. Chứng minh rằng khi m thay đổi, họ đường thẳng (Δ_m)

$$(1 - m^2)x + 2my + m^2 - 4m + 3 = 0$$
luôn luôn tiếp xúc với một đường tròn cố định.

Gìah

Giả sử khi m thay đổi, họ đường thẳng (Δ_m) luôn luôn tiếp xúc với một đường tròn cố định tâm $I(x_0; y_0)$, bán kính $R(x_0; y_0)$ và số R là hằng số một)

Ta có: $d(I; \Delta_m) = R, \forall m$

$$
\iff \sqrt{(1 - m^2)x_0 + 2my_0 + m^2 - 4m + 3} = R, \forall m
$$

$$
\iff (1 - m^2)x_0 + 2my_0 + m^2 - 4m + 3 = R(1 + m^2), \forall m
$$

Xét hai trường hợp:

a.) $(1 - m^2)x_0 + 2my_0 + m^2 - 4m + 3 = R(1 + m^2), \forall m$

$$
\iff (-x_0 + 1 - R)m_2 + 2(y_0 - 2)m + (x_0 + 3 - R) = 0, \forall m
$$

$$
\iff -x_0 + 1 - R = 0
$$

$$
\iff y_0 - 2 = 0
$$

$$
\iff x_0 + 3 - R = 0
$$

$$
\iff x_0 = -1; y_0 = 2; R = 2
$$

b.) $(1 - m^2)x_0 + 2my_0 + m^2 - 4m + 3 = -R(1 + m^2), \forall m$
C. BÀI TẬP THỰC TẬP

1. Cho tam giác ABC có đỉnh A(2; 2)
 a.) Lập phương trình các cạnh của tam giác biết phương trình các đường cao: BH: 9x - 3y - 4 = 0; CH: x + y - 2 = 0
 b.) Lập phương trình đường thẳng đi qua A và vuông góc với đường thẳng AC.

2. Viết phương trình các đường trung trực của tam giác ABC biết trung điểm các cạnh là: M(-1; -1), N(1; 9), P(9; 1)

3. Lập phương trình các cạnh của tam giác ABC biết A(1; 3) và hai đường trung tuyến có phương trình là: x - 2y + 1 = 0 và y - 1 = 0

4. Tìm phương trình của đường thẳng đi qua M(8; 6) và tạo với hai trục tọa độ một tam giác có diện tích bằng 12 (dvđt)

5. Cho ba điểm: A(1; 2), B(3; 0), C(-4; -5)
 a.) Viết phương trình của đường thẳng đi qua A và chứa hai điểm B và C.
 b.) Viết phương trình của đường thẳng cách đều ba điểm A, B, C.

6. Viết phương trình của đường thẳng đi qua giao điểm của hai đường thẳng:
 \((\Delta_i): 3x - 2y + 1 = 0, (\Delta_j): 2x - 3y + 5 = 0\)
 a.) Đi qua điểm M(2; 1)
 b.) Song song với đường thẳng 2x - 7y - 2 = 0

7. Lập phương trình các cạnh của tam giác ABC nếu B(2; -1), đường cao và phân giác trong qua hai đỉnh A, C lần lượt là: 3x - 4y + 27 = 0 và x + 2y - 5 = 0

8. Cho hình vuông có một đỉnh A(-4; 5) và có một đường chéo đặt trên đường thẳng 7x - y + 8 = 0. Lập phương trình các cạnh và đường chéo thứ hai của hình vuông đó.

9. Lập phương trình của đường thẳng đi điểm I(-2; 0) và tạo với đường thẳng x + 3y - 3 = 0 một góc 45°.

10. Viết phương trình các cạnh của tam giác ABC biết:
 a.) Dinh B(2; 6), phương trình một đường cao và một đường phân giác vẽ từ cung 1 đỉnh là: x - 7y + 15 = 0 và 7x + y + 5 = 0
 b.) Dinh A(3; -1), phương trình một đường phân giác và một đường trung tuyến vẽ từ hai đỉnh khác nhau là: x - 4y + 10 = 0 và 6x + 10y - 59 = 0

11. Viết phương trình của hai đường thẳng lần lượt qua A(1; 5), B(3; -1) và đối xứng với nhau qua đường thẳng (D): 3x - 2y - 6 = 0

12. Cho hai đường thẳng (D) và (D') có phương trình chung: \(x^2 + xy - 6y^2 = 0\)
 a.) Chứng tỏ rằng đó là hai đường thẳng phân biệt, và hãy viết phương trình của mỗi đường thẳng đó.
b.) Viết phương trình chung của các đường phân giác của góc tạo bởi (D) và (D')

13. Viết phương trình đường thẳng qua N(1; 3) cắt hai nửa trực Ox, Oy tại P và Q sao cho:
 a.) OP + OQ nhỏ nhất
 b.) \(\frac{1}{OP^2} + \frac{1}{OQ^2} \) nhỏ nhất

14. Cho hai điểm M và N lần lượt lùi đồng trên trực Ox và Oy sao cho: \(\overrightarrow{OM} + \overrightarrow{ON} = k \) (k là một hàng số). Gọi E là đỉnh thứ tư của hình chữ nhật mà hai cạnh là OM và ON. Chứng minh rằng đường thẳng qua E vuông góc với MN thì đi qua một điểm cố định.

15. Trong hệ tọa độ Oxy, cho tam giác vuông ABC có cạnh vuông AC = 2, BC = 1. A di động trên Ox, B di động trên Oy. Tìm quá trình đỉnh góc vuông C của tam giác đó.

16. Cho hở đường thẳng \((\Delta_m) \): \(m^2x - my + 1 = 0 \). Tìm quá trình các điểm trên mp sao cho:
 a.) Có một đường thẳng của hở \((\Delta_m) \) đi qua.
 b.) Có hai đường thẳng của hở \((\Delta_m) \) đi qua.

17. Tìm các giá trị nguyên của m mà hai đường thẳng cắt nhau tại một điểm cố tại đọ nguyên:
 \((\Delta_1) : mx + y - 3 = 0 \); \((\Delta_2) : x + my - 2m - 1 = 0 \)

18. Cho phương trình \(mx + m(m - 1)y - 1 = 0 \) (1)
 a.) Định m để (1) là phương trình của đường thẳng \((\Delta_m) \)
 b.) \((\Delta_m) \) có đi qua điểm cố định nào không?

19. Cho đường thẳng (D): \(x \cos \alpha + y \sin \alpha + 2 \cos \alpha + 1 = 0 \)
 a.) Chứng minh rằng khi \(\alpha \) thay đổi, (D) luôn luôn tiếp xúc với một đường thẳng cố định.
 b.) Cho điểm I(-2; 1). Đặt \(\overline{IH} \) vuông góc với (D), H \(\in (D) \) và kéo dài IH một đoạn \(HN = 2 \overline{IH} \). Tìm tọa độ của N theo \(\alpha \).

20. Cho hai điểm A(1; 1), B(7; 4) và đường thẳng (d): \(2x - y - 4 = 0 \). Chứng minh rằng (d) cắt đoạn AB tại một điểm M. M chia đoạn AB theo tỷ số nào?

21. Cho đường thẳng \((\Delta_m) : (m - 2)x + (m - 1)y + 2m - 1 = 0 \)
 a.) Chứng minh rằng \((\Delta_m) \) luôn luôn đi qua một điểm cố định A.
 b.) xác định đường thẳng \((\Delta_m) \) cắt B(2; 3) một đoạn lớn nhất.

22. Xác định toạ độ các đỉnh của một tam giác có M(1; 1) là trung điểm của một cạnh còn hai cạnh kia có phương trình là \(x + y - 2 = 0 \); \(2x + 6y + 3 = 0 \)

23. Cho đường thẳng \((\Delta) : x - 2y - 2 = 0 \) và hai điểm A(1; 2),
 B(2; 5). Tìm điểm M trên \((\Delta) \) sao cho \(|\overrightarrow{MA} + \overrightarrow{MB}| \) nhỏ nhất.

24. Cho đường thẳng \((\Delta) : x - 3y - 1 = 0 \) và hai điểm A(5; 3), B(2; -3). Tìm điểm M trên \((\Delta) \) sao cho \(MA^2 + MB^2 \) nhỏ nhất.

DÁP SÓ

1. a.) \(x - y = 0; x + 3y - 8 = 0; 7x + 5y - 8 = 0 \), b.) \(3x - y - 4 = 0 \)
2. \(5x + y - 14 = 0; x - y = 0; x + 5y - 14 = 0 \)
3. \(AB : x - y + 2 = 0; AC : x + 2y - 7 = 0; BC : x - 4y - 1 = 0 \)
4. $3x - 2y - 12 = 0; 3x - 8y + 24 = 0$

5. a.) $5x - 7y + 9 = 0$
 b.) $5x - 7y - 3 = 0, 7x - 5y - 9 = 0, x + y + 3 = 0$

6. a.) $8x + 3y - 19 = 0$ b.) $10x - 35y + 77 = 0$

7. $BC : 4x + 3y - 5 = 0, AC : y - 3 = 0, AB : 4x + 7y - 1 = 0$

8. Đường chéo: $x + 7y - 31 = 0$. Các cạnh:

 $3x - 4y + 32 = 0; 4x + 3y + 1 = 0; 4x + 3y - 24 = 0; 3x - 4y + 7 = 0$

9. $x - 2y + 2 = 0; 2x + y + 4 = 0$

10. a.) $4x - 3y + 10 = 0; 7x + y - 20 = 0; 3x + 4y - 5 = 0$
 b.) $+ 9y - 65 = 0; 6x - 7y - 25 = 0; 18x + 13y - 41 = 0$

11. $x - 2y - 5 = 0; 29x - 2y - 19 = 0$

12. a.) $x - 2y = 0, x + 3y = 0$ b.) $x^2 - 14xy - y^2 = 0$

13. a.) $3x + y\sqrt{3} - 3(1 + \sqrt{3}) = 0$ b.) $x + 3y - 10 = 0$

14. (k; k)

15. $y = \pm 2x, |x| \leq 1, |y| \leq 2$

16. a.) $x = 0, y^2 - 4x = 0$, bờ điểm (0; 0) b.) $y^2 - 4x > 0, x \neq 0$

17. $m = 0, m = -2.$

18. a.) $m \neq 0$ b.) không

19. a.) I(-2; 0); R = 1
 b.) N(-2 - 3cos\(\alpha \)sin\(\alpha + l \); 1 - 3sin\(\alpha \)sin\(\alpha + l \))

20. $k = \frac{1}{2}$

21. a.) A(1; -3) b.) $x + 6y + 17 = 0$

22. A($\frac{15}{4}; -\frac{7}{4}$), B($\frac{1}{4}; -\frac{7}{4}$), C($-\frac{9}{4}; -\frac{1}{4}$)

23. M($\frac{3}{2}; \frac{1}{2}$)

24. M($\frac{13}{4}; \frac{3}{4}$)

BÀI 3
ĐƯỜNG TRÒN

A. TÔM TẮT LÝ THUYẾT
I. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

1. Phương trình đường tròn tâm I(a; b) bán kính R.

$$(x - a)^2 + (y - b)^2 = R^2$$
2. Phương trình: \(x^2 + y^2 - 2ax - 2by + c = 0 \) với \(a^2 + b^2 - c > 0 \), là phương trình đường tròn tâm \(I(a;b) \), bán kính \(R = \sqrt{a^2 + b^2 - c} \).

II. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VỚI ĐƯỜNG TRỌN

Cho đường thẳng \((\Delta) \) và đường tròn \((C) \) có tâm I, bán kính R.

Gọi \(d(I, \Delta) \) là khoảng cách từ I đến \((\Delta) \). Ta có:
- \(d(I, \Delta) < R \Leftrightarrow (\Delta) \) cắt \((C) \) tại hai điểm phân biệt.
- \(d(I, \Delta) = R \Leftrightarrow (\Delta) \) tiếp xúc với \((C) \).
- \(d(I, \Delta) < R \Leftrightarrow (\Delta) \) không cắt \((C) \).

III. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRỌN

Cho hai đường tròn \((C_1) \) và \((C_2) \) có tâm và bán kính lần lượt là \(I_1, R_1 \) và \(I_2, R_2 \). Ta có:
- \(|R_1 - R_2| < I_1I_2 < R_1 + R_2 \Leftrightarrow (C_1) \) và \((C_2) \) cắt nhau
- \(I_1I_2 = R_1 + R_2 \Leftrightarrow (C_1) \) và \((C_2) \) tiếp xúc ngoài.
- \(I_1I_2 = |R_1 - R_2| \Leftrightarrow (C_1) \) và \((C_2) \) tiếp xúc trong.
- \(I_1I_2 > R_1 + R_2 \Leftrightarrow (C_1) \) và \((C_2) \) ở ngoài nhau.
- \(I_1I_2 < |R_1 - R_2| \Leftrightarrow (C_1) \) và \((C_2) \) ở trong nhau.

B. BÀI TẬP ỨNG DỤNG

1. Lập phương trình của các đường tròn:

 a.) Đường kính AB với A(1; 2) và B(-2; 0)
 b.) Đường tròn đi qua ba điểm A(-1; 3), B(1; 1) và C(2; 4)

Giải

a.) Đường tròn đường kính AB có tâm I là trung điểm của đoạn AB và có bán kính R = \(\frac{AB}{2} \)

Ta có: I(\(\frac{-1}{2}; 1 \)) và \(R = \frac{AB}{2} = \frac{1}{2} \sqrt{(1 + 2)^2 + (2 - 0)^2} = \frac{\sqrt{13}}{2} \)

Nên phương trình của đường tròn đường kính AB là:

\[(x + \frac{1}{2})^2 + (y - 1)^2 = \frac{13}{4} \]

b.) Phương trình của đường tròn có dạng:

\[x^2 + y^2 - 2ax - 2by + c = 0 \]

Đường tròn qua ba điểm A, B, C nên:

\[\begin{aligned}
1 + 9 + 2a - 6b + c = 0 & \quad \Rightarrow 2a - 6b + c = -10 \\
1 + 1 - 2a - 2b + c = 0 & \quad \Rightarrow 2a + 2b - c = 2 \\
4 + 16 - 4a - 8b + c = 0 & \quad \Rightarrow 4a + 8b - c = 20
\end{aligned} \]

Giải hệ này ta được: \(a = \frac{3}{4}, b = \frac{11}{4}, c = 5 \)
Vậy phương trình của đường tròn đi qua ba điểm A, B, C là:

\[x^2 + y^2 - \frac{3}{2}x - \frac{11}{2}y + 5 = 0 \]

2. Cho \((C_m): x^2 + y^2 + 2(m-1)x - 2(m-2)y + m^2 - 8m + 13 = 0\)

a.) Tìm m để \((C_m)\) là đường tròn.
b.) Tìm được tích tâm I của đường tròn \((C_m)\) khi m thay đổi.

Giải

a.) \((C_m)\) là đường tròn khi:

\[
\begin{align*}
(a^2 + b^2 - c > 0 & \iff -(m-1)^2 + (m-2)^2 - (m^2 - 8m + 13) > 0 \iff m^2 + 2m - 8 \\
& \iff m < -4 \lor m > 2 \quad (\alpha)
\end{align*}
\]

b.) Locus đó tạo được tâm I của đường tròn \((C_m)\) là:

\[
\begin{cases}
x = 1 - m \\
y = m - 2
\end{cases}
\]

Khư m giữa tọa độ tâm I ta được: \(x + y + 1 = 0\)

Mặt khác từ (1) ta có:\(a = 1 - x,\) và do điều kiện \((\alpha)\) ta suy ra:

\[
1 - x < -4 \lor 1 - x > 2 \iff x < -1 \lor x > 5
\]

Vậy tọa độ tâm của I là phần đường thẳng: \(x + y + 1 = 0\) với \(x < -1\) hay \(x > 5\)

3. Cho \((C_m): x^2 + y^2 + (m + 2)x - (m + 4)y + m + 1 = 0\)

a.) Xác định m để \((C_m)\) là đường tròn có bán kính nhỏ nhất.
b.) Chứng minh ràng \((C_m)\) luôn luôn đi qua hai điểm cố định.
c.) Tìm tập hợp tất cả các điểm m \((C_m)\) không thể đi qua.

Giải

a.) Ta có:

\[
b) \quad a^2 + b^2 - c = (\frac{m+2}{2})^2 + (\frac{m+4}{2})^2 - (m + 1) = \frac{1}{2}(m^2 + 4m + 8) - \frac{1}{2}(m^2 + 4) > 0,
\]

với mọi m.

Nên \((C_m)\) luôn luôn là đường tròn

Bán kính của \((C_m)\) là:

\[
R = \sqrt{a^2 + b^2 - c} = \frac{1}{\sqrt{2}} \sqrt{(m + 2)^2 + 4} \geq \sqrt{2},
\]

với mọi m

Và: \(R = \sqrt{2} \iff m + 2 = 0 \iff m = -2\)

Nên \(R\) nhỏ nhất bằng \(\sqrt{2}\) khi \(m = -2\)

Vậy khi \(m = -2\) thì \((C_m)\) là đường tròn có bán kính nhỏ nhất.

b.) Giả sử \((C_m)\) luôn luôn đi qua điểm cố định \((x_0, y_0)\) thì:

\[
x_0^2 + y_0^2 + (m + 2)x_0 - (m + 4)y_0 + m + 1 = 0, \ \forall m
\]
(x_0 - y_0 + 1)m + (x_0^2 + y_0^2 + 2x_0 - 4y_0 + 1) = 0, \forall m
\quad \Rightarrow \begin{cases} x_0 - y_0 + 1 = 0 \\ x_0^2 + y_0^2 + 2x_0 - 4y_0 + 1 = 0 \end{cases}
(1) \quad (2)

Từ (1) ta suy ra: y_0 = x_0 + 1

Thế vào (2) ta được: x_0^2 + (x_0 + 1)^2 + 2x_0 - 4(x_0 + 1) + 1 = 0
\quad \Rightarrow x_0^2 - 1 = 0
\quad \Rightarrow x_0 = \pm 1

Vậy: x_0 = 1 \Rightarrow y_0 = 2
\quad x_0 = -1 \Rightarrow y_0 = 0

Do đó (C_m) luôn luôn đi qua hai điểm cố định có tọa độ (1; 2) và (-1; 0)

c) Giả sử M(x_1; y_1) là điểm mà (C_m) không thể đi qua, thì phương trình theo ẩn số m:
\quad x_1^2 + y_1^2 + (m + 2)x_1 - (m + 4)y_1 + m + 1 = 0
\quad \Rightarrow (x_1 - y_1 + 1)m + (x_1^2 + y_1^2 + 2x_1 - 4y_1 + 1) = 0

là phương trình vô nghiệm.

Xây ra khi:
\quad \begin{cases} x_1 - y_1 + 1 = 0 \\ x_1^2 + y_1^2 + 2x_1 - 4y_1 + 1 \neq 0 \end{cases}
\quad \Rightarrow x_1 \neq \pm 1

Vậy tập hợp tất cả các điểm mà (C_m) không thể đi qua là đường thẳng: x – y + 1 = 0, bộ đi hai điểm có hoành độ x = ± 1

4. Chỗ ba điểm: A(-5; -1), B(-2; 1), C(4; 5). Tìm quy tích các điểm M nhìn hai đoạn thẳng AB, BC dưới hai góc bằng nhau.

Giải

Ta có: \overrightarrow{AB} = (3; 2), \quad \overrightarrow{AC} = (9; 6)

Nên: \overrightarrow{AC} = 3\overrightarrow{AB}, do đó hai điểm A, B, C thẳng hàng.

Ta có điểm M nhìn hai đoạn nên MB chính là đường phân giác ra:

\frac{MA}{MC} = \frac{AB}{BC} = \frac{\sqrt{13}}{2\sqrt{13}} = \frac{1}{2} \quad \Rightarrow MC = 2MA

Gọi (x; y) là tọa độ điểm M, ta có:

MC = 2MA
\quad \Rightarrow MC^2 = 4MA^2
\quad \Rightarrow (x - 4)^2 + (y - 5)^2 = 4[(x + 5)^2 + (y + 1)^2]
\quad \Rightarrow x^2 + y^2 + 16x + 6y + 21 = 0

Đây là phương trình đường tròn tâm I(-8; -3), bán kính
\[R = \sqrt{(-8)^2 + (-3)^2 - 21} = 2\sqrt{13} \]

Vậy quỹ tích của M là đường tròn tâm I(-8; -3), bán kính
\[R = 2\sqrt{13} \]

5. Biện luận theo m vị trí tương đối của đường thẳng \((\Delta)\):

\[mx - y - 3m - 2 = 0 \] với đường tròn \((C): x^2 + y^2 - 4x - 2y = 0\)

\[\text{Giải} \]

Ta có \((C)\) là đường tròn tâm I(2; 1), bán kính \(R = \sqrt{5} \)

Khoảng cách từ I đến \((\Delta)\) là:
\[d(I, \Delta) = \frac{|m + 3|}{\sqrt{m^2 + 1}} \]

Ta có: \[d(I, \Delta) < R \iff \frac{|m + 3|}{\sqrt{m^2 + 1}} < \sqrt{5} \]
\[\iff \frac{|m + 3|}{\sqrt{m^2 + 1}} < 5 \iff |m + 3| < 5\sqrt{\frac{m^2 + 1}{m^2 + 1}} \]
\[\iff (m + 3)^2 < 5(m^2 + 1) \iff 2m^2 - 3m - 2 > 0 \]
\[\iff m < -\frac{1}{2} \text{ hay } m > 2 \]

Nên: nếu \(m < -\frac{1}{2} \) hay \(m > 2 \) thì \(d(I, \Delta) < R \) nên \((\Delta)\) cắt \((C)\).

Nếu \(m = -\frac{1}{2} \) hay \(m = 2 \) thì \(d(I, \Delta) = R \) nên \((\Delta)\) tiếp xúc \((C)\).

Nếu \(-\frac{1}{2} < m < 2 \) thì \(d(I, \Delta) > R \) nên \((\Delta)\) không cắt \((C)\).

6. Viết phương trình của đường thẳng cắt đường tròn \((C): x^2 + y^2 + 2x - 4y - 20 = 0\) theo một dây cung đi qua M(3; 0) có độ dài nhỏ nhất, lớn nhất.

\[\text{Giải} \]

\((C)\) là đường tròn tâm I(-1; 2), bán kính \(R = 5 \)

Ta có \(IM^2 - R^2 = -5 < 0 \); nên M nằm trong đường tròn \((C)\).

Đường thẳng đi qua M cắt \((C)\)

Áp dụng bất đẳng thức Cauchy:

\[MA + MB \geq 2 \sqrt{MA.MB} \] (không đổi)

Đặt thực xác ra khi: \(MA = MB \)

Vậy đây AB có độ dài nhở nhất khi M là trung điểm AB lúc đó IM \(\perp AB \).

Đường thẳng cần tìm là đường thẳng đi qua M nhận \(\overrightarrow{IM} = (4; -2) \) làm vectơ pháp tuyến nên phương trình là:

\[4(x - 3) - 2(y - 0) = 0 \text{ hay: } 2x - y - 6 = 0 \]

Mặt khác \(AB \leq 2R \)

Nên đây AB lớn nhất khi AB là đường kính của \((C)\)
Lục đồ đường thẳng cần tìm chính là đường thẳng đi qua hai điểm I và M. Đồ là đường thẳng đi qua M nhận $\overrightarrow{IM} = (4; -2)$ là vecto chỉ phương nên có phương trình là:

$$\frac{x - 3}{4} = \frac{y - 0}{-2}$$

Hay: $x + 2y - 3 = 0$

7. Tìm điểm M trên đường tròn (C): $x^2 + y^2 - 6x + 4y + 9 = 0$, sao cho khoảng cách từ M đến đường thẳng $(\Delta): 3x - 4y + 8 = 0$, là nhỏ nhất, lớn nhất.

Giải

Ta có: $x^2 + y^2 - 6x + 4y + 9 = 0 \Leftrightarrow (x - 3)^2 + (y + 2)^2 = 4$ (C) là đường tròn tâm I(3; -2), bán kính $R = 2$

Gọi M(x₀, y₀) là điểm cần tìm trên (C), ta có:

$$(x₀ - 3)^2 + (y₀ + 2)^2 = 4 \ (1)$$

Khoảng cách từ M đến (Δ) là:

$$d(M, \Delta) = \frac{1}{5} |3x₀ - 4y₀ + 8| = \frac{1}{5} |3(x₀ - 3) - 4(y₀ + 2) + 25|$$

Áp dụng bất đẳng thức B.C.S ta được:

$$|3(x₀ - 3) - 4(y₀ + 2)| \leq \sqrt{3^2 + (-4)^2} \sqrt{(x₀ - 3)^2 + (y₀ + 2)^2} = 10 \ [đố(1)]$$

$$\Leftrightarrow -10 \leq 3(x₀ - 3) - 4(y₀ + 2) \leq 10$$

$$\Leftrightarrow 15 \leq 3(x₀ - 3) - 4(y₀ + 2) + 25 \leq 35$$

Vậy ta có: $d(M, \Delta) = \frac{1}{5} [3(x₀ - 3) - 4(y₀ + 2) + 25]$

Và: $3 \leq d(M, \Delta) \leq 7$

Trong bất đẳng thức trên đầu bằng xảy ra khi:

$$\frac{x₀ - 3}{3} = \frac{y₀ + 2}{-4} \Leftrightarrow y₀ + 2 = \frac{-4}{3}(x₀ - 3)$$

Thế vào (1) ta được:

$$(x - 3)^2 + \frac{16}{9}(x₀ - 3)^2 = 4 \Leftrightarrow (x₀ - 3)^2 = \frac{36}{25} \Leftrightarrow x₀ = \frac{21}{5} \vee x₀ = \frac{9}{5}$$

Và $x₀ = \frac{21}{5} \Rightarrow y₀ = -\frac{18}{5} \ ; x₀ = \frac{9}{5} \Rightarrow y₀ = -\frac{2}{5}$

Vậy:

$$\begin{cases}
 d(M, \Delta) \geq 3 \\
 d(M, \Delta) = 3 \Leftrightarrow x₀ = \frac{9}{5} \ ; y₀ = -\frac{2}{5}
\end{cases}$$

Nên điểm $M₁(\frac{9}{5}; -\frac{2}{5})$ ở trên (C) có khoảng cách đến đường thẳng (Δ) là nhỏ nhất

Và:
\[
\begin{cases}
 d(M, \Delta) \leq 7 \\
 d(M, \Delta) = 7 \iff x_0 = \frac{21}{5}; y_0 = -\frac{18}{5}
\end{cases}
\]

Nên điểm \(M_2(\frac{21}{5}; -\frac{18}{5}) \) ở trên (C) có khoảng cách đến đường thẳng \((\Delta)\) là lớn nhất.

8. Cho đường tròn \((C)\): \(x^2 + y^2 + 4x - 4y - 1 = 0 \). Lập phương trình tiếp tuyến

1) \((\Delta) \) tiếp xúc \((C)\) tại \(M(1; 2) \)
2) \((\Delta) \) đi qua \(A(0; -1) \)
3) \((\Delta) \) song song với \((D): 3x - 4y + 2011 = 0 \)

Giải

Ta có \((C)\) là đường tròn tâm \(I(-2; 2)\) bán kính \(R = 3\)

\((\Delta)\) tiếp xúc \((C)\) tại \(M(1; 2)\) nên đường thẳng \((\Delta)\) chính là đường thẳng đi qua \(M(1; 2)\) nhận \(IM \) là vectơ pháp tuyến.

Vậy phương trình của \((\Delta)\) là: \(3(x - 1) = 0 \) hay \(x - 1 = 0 \)

b.) Gọi \(n = (a; b) \neq 0 \) là vectơ pháp tuyến nên phương trình của \((\Delta)\) có dạng: \(a(x - 0) + b(y + 1) = 0 \)

\(\iff ax + by + b = 0 \)

\((\Delta)\) là tiếp tuyến của \((C)\) nên:

\[
d(I, \Delta) = R \iff \left| \frac{-2a + 3b}{\sqrt{a^2 + b^2}} \right| = 3
\]

\[\iff (-2a + 3b)^2 = 9(a^2 + b^2)\]

\[\iff 9a^2 + 5b^2 - 12ab = 0\]

\[\iff a = 0 \lor 9a + 12b = 0\]

Nếu \(a = 0 \) thì \(b \neq 0 \) nên phương trình của \((\Delta)\) là: \(y + 1 = 0 \)

Nếu \(9a + 12b = 0 \) thì ta có thể chọn \(a = 12, b = -5 \) nên phương trình của \((\Delta)\) là: \(12x - 5y - 5 = 0 \)

c.) \((\Delta) \) song song với \((D): 3x - 4y + 2011 = 0 \), nên \((\Delta)\) nhận vectơ chi tuyến \(\vec{u} = (4; 3) \) của \((D)\) là vectơ chi phương nên phương trình của \((\Delta)\) có dạng: \(3x - 4y + c = 0 \)

Vì \((\Delta)\) là tiếp tuyến của \((C)\) nên:

\[
d(I, \Delta) = R \iff \left| \frac{c - 14}{5} \right| = 3 \iff |c - 14| = 15 \iff c - 14 = \pm 15 \iff c = 29 \lor c = -1
\]

Vậy có hai tiếp tuyến là: \((\Delta_1): 3x - 4y + 29 = 0\)

\((\Delta_2): 3x - 4y - 1 = 0 \)
9. Viết phương trình tiếp tuyến chung của hai đường tròn:

(C_1): x^2 + y^2 - 6x + 5 = 0

(C_2): x^2 + y^2 - 12x - 6y + 44 = 0

Giải

Ta có: (C_1) là đường tròn tâm I_1(3;0), bán kính R_1 = 2

(C_2) là đường tròn tâm I_2(6;3), bán kính R_2 = 1

Đường thẳng (Δ): ax + by + c = 0 (a^2 + b^2 ≠ 0) là tiếp tuyến chung của (C_1) và (C_2) khi:

\[
\begin{align*}
\frac{d(I_1, Δ)}{d(I_2, Δ)} &= R_1 \\
\frac{|3a + c|}{\sqrt{a^2 + b^2}} &= 2 \\
\frac{|6a + 3b + c|}{\sqrt{a^2 + b^2}} &= 1
\end{align*}
\]

⇒ \(\frac{(3a + c)^2}{6a + 3b + c} = 4(a^2 + b^2)\) (1)

a.) Trường hợp 1:

\[
\begin{align*}
3a + c &= 4(6a + 3b + c) \\
3a &= 2(6a + 3b + c)
\end{align*}
\]

từ (2) suy ra: \(c = -9a - 6b\) (3)

Thế vào (1) ta được: \((-6a - 6b)^2 = 4(a^2 + b^2)\) ⇒ \(4a^2 + 4b^2 + 9ab = 0\)

Coi phương trình này như phương trình bậc hai theo a, giải ra ta được:

\[a = \left(-9 ± \sqrt{17}\right)/8\]

Chọn b = 1 thì \(a = -9 ± \sqrt{17}/8\) và \(c = -9\left(-9 ± \sqrt{17}\right)/8 - 6 = 33 ± 9\sqrt{17}/8\)

Vậy ta được hai tiếp tuyến chung là:

\[
\begin{align*}
(9 + \sqrt{17})x - 8y - (33 + 9\sqrt{17}) &= 0 \\
(9 - \sqrt{17})x - 8y - (33 - 9\sqrt{17}) &= 0
\end{align*}
\]

b.) Trường hợp 2: \(\begin{align*}
(3a + c)^2 &= 4(a^2 + b^2) \\
3a + c &= -2(6a + 3b + c)
\end{align*}\) (4)

từ (4) suy ra: \(c = -5a - 2b\).

Thế vào (1) ta được: \((-2a - 2b)^2 = 4(a^2 + b^2)\) ⇒ \(4ab = 0\).

Vì a, b không cùng bằng 0, nên ta có:

* a = 0 ≠ b, c = -2b
* a ≠ 0 = b, c = -5a.

Vậy ta được hai tiếp tuyến chung là: \(y - 2 = 0\) và \(x - 5 = 0\).
Tóm lại (C₁) và (C₂) có bốn tiếp tuyến chung có phương trình là:
\[x - 5 = 0. \]
\[y - 2 = 0. \]
\[(9 + \sqrt{17})x - 8y - (33 + 9\sqrt{17}) = 0. \]
\[(9 - \sqrt{17})x - 8y - (33 - 9\sqrt{17}) = 0. \]

10. Cho đường tròn (C): \[x^2 + y^2 = 9, \] và một điểm A (4; -6) nằm ngoài đường tròn. Từ A kẻ hai tiếp tuyến AT₁ và AT₂ với đường tròn, trong đó T₁, T₂ là các tiếp điểm. Viết phương trình của đường thẳng T₁T₂.

Gải

a.) Ta có (C) là đường tròn tâm O, bán kính R = 3.

Mặt khác AT₁ và AT₂ là các tiếp tuyến của (C).

Để T₁, T₂ ở trên đường tròn đúng phương trình:
\[OA = \sqrt{4^2 + (-6)^2} = \sqrt{13} \]

Đường tròn này có tâm I là
\[I(2; -3) \] và bán kính \(R' = 3 \).

Nên có phương trình:
\[(x - 2)^2 + (y + 3)^2 = 13. \]

Hãy \[x^2 + y^2 - 4x + 6y = 0 \]

Ta có toạ độ của T₁ và T₂ là nghiệm của hệ phương trình:
\[\begin{cases} x^2 + y^2 = 9 \\ x^2 + y^2 - 4x + 6y = 0 \end{cases} \]

Suy ra toạ độ của T₁ và T₂ nghiệm đúng phương trình:
\[4x - 6y - 9 = 0 \]

Nên phương trình này chính là phương trình của đường thẳng T₁T₂.

11. Cho hở đường tròn (Cₘ): \[x^2 + y^2 - 2mx + 2my + 2m^2 - 1 = 0. \]

Chứng minh rằng (Cₘ) luôn luôn tiếp xúc với hai đường thẳng cố định.

Gải

Ta có (Cₘ) là hở đường tròn tâm I (m, -m), bán kính R = 1.

Gia sử (Cₘ) luôn luôn tiếp xúc với đường thẳng cố định:
\[(\Delta): ax + by + c = 0 \] \((a^2 + b^2 \neq 0) \).

Ta có:
\[d(I, \Delta) = R, \quad \forall m \Leftrightarrow \frac{|am - bm + c|}{\sqrt{a^2 + b^2}} = 1, \forall m. \]

\[\Leftrightarrow |am - bm + c| = \sqrt{a^2 + b^2}, \forall m. \]

\[\Leftrightarrow (am - bm + c)^2 = a^2 + b^2, \forall m. \]
\[(a-b)^2 m^2 + 2c(a-b)m + c^2 - a^2 - b^2 = 0, \forall m\]

\[
\begin{align*}
& (a-b) = 0 \\
& 2c(a-b) = 0 \\
& c^2 - a^2 - b^2 = 0
\end{align*}
\]

Từ (1) ta có: \(a = b\), và (2) luôn luôn thỏa.
Mà \(a^2 + b^2 \neq 0\) nên \(a, b\) đều khác 0.
Từ (3) ta có: \(c^2 = a^2 + b^2 = 2b^2\) \(\iff c = \pm b\sqrt{2}\).
Vậy phương trình của \((\Delta)\) là:
\[bx + by + \pm b\sqrt{2} = 0\]
\((C_m)\) luôn luôn tiếp xúc với hai đường thẳng cố định có phương trình: \(x + y \pm \sqrt{2} = 0\).

12. Biến luận theo \(m\) vị trí tương đối của hai đường tròn:
\[(C_1): x^2 + y^2 - 1 = 0.\]
\[(C_2): x^2 + y^2 - 2(m + 1) + 4my - 5 = 0.\]

Giải
Ta có: \((C_1)\) là đường tròn tâm O, bán kính \(R = 1\).
\((C_2)\) là đường tròn tâm I(m + 1; -2m) , bán kính \(R_2 = \sqrt{(m+1)^2 + (-2m)^2} + 5\).
Suy ra: \(OI = \sqrt{(m+1)^2 + (-2m)^2}\),
\[R_1 + R_2 = \sqrt{(m+1)^2 + (-2m)^2} + 5 + 1.\]
Rõ ràng: \(R_2 > R_1\) nên
\[|R_2 - R_1| = R_2 - R_1 = \sqrt{(m+1)^2 + (-2m)^2} + 5 - 1.\]
Ta có: \(OI < R_1 + R_2,\) với mọi \(m\).
Còn: \(OI > |R_2 - R_1|\) \(\iff \sqrt{(m+1)^2 + (-2m)^2} > \sqrt{(m+1)^2 + (-2m)^2} + 5 - 1\)
\[\iff 1 + \sqrt{(m+1)^2 + (-2m)^2} > \sqrt{(m+1)^2 + (-2m)^2} + 5.\]
\[\iff \left(1 + \sqrt{(m+1)^2 + (-2m)^2}\right)^2 > (m+1)^2 + (-2m)^2 + 5.\]
\[\iff (m+1)^2 + (-2m)^2 > 4\]
\[\iff 5m^2 + 2m - 3 > 0\]
\[\iff m < -1 \vee m > \frac{3}{5}.\]
Vậy:

a.) Nếu \(m < -1\) hay \(m > \frac{3}{5}\) thì \(|R_2 - R_1| < OI < R_1 + R_2\) nên \((C_1)\) và \((C_2)\) cắt nhau.
b.) Nếu $m = -1$ hay $m = \frac{3}{5}$ thì $OI = |R_2 - R_1|$ nên $(C_1), (C_2)$ tiếp xúc nhau.

c.) Nếu $-1 < m < \frac{3}{5}$ thì $OI < |R_2 - R_1|$ nên (C_1) nằm trong (C_2).

13. Cho hệ đường tròn $(C_m): x^2 + y^2 - 2(m - 1)x - (m + 6)y + m + 10 = 0$.

Chứng minh rằng các đường tròn (C_m) luôn luôn tiếp xúc nhau tại một điểm cố định A khi m thay đổi.

Giải: Ta chứng minh bất kỳ hai đường tròn khác nhau nào thuộc hệ (C_m) luôn luôn có một điểm chung duy nhất là điểm A cố định.

Điều đó xảy ra khi hệ thuận phương trình

\[
\begin{align*}
\begin{cases}
 x^2 + y^2 - 2(m_1 - 1)x - (m_1 + 6)y + m_1 + 10 = 0 \\
 x^2 + y^2 - 2(m_2 - 1)x - (m_2 + 6)y + m_2 + 10 = 0
\end{cases}
\end{align*}
\]

Luôn luôn có nghiệm duy nhất không phụ thuộc m_1, m_2 với mọi m_1, m_2 mà $m_1 \neq m_2$.

Trừ (1) cho (2) theo từng vế ta được: $(m_1 - m_2)(2x + y - 1) = 0$.

Suy ra: $2x + y - 1 = 0$. (vì $m_1 - m_2 \neq 0$)

Hay: $y = 1 - 2x$.

Thế vào (1) xong rút gọn ta được: $x^2 + 2x + 1 = 0$.

Suy ra: $x = -1$ do đó $y = 3$.

Vậy hệ luôn luôn có nghiệm duy nhất $x = -1$, $y = 3$ không phụ thuộc m_1, m_2, với mọi m_1, m_2 mà $m_1 \neq m_2$. Nên các đường tròn thuộc hệ (C_m) luôn luôn tiếp xúc nhau tại một điểm cố định $A (-1; 3)$ khi m thay đổi.

C. BÀI TẬP THỨC TẬP

1. Lập phương trình của đường tròn;

a.) Tâm I (1; 2) và tiếp xúc với đường thẳng $(\Delta_1): x - 2y - 2 = 0$

b.) Tâm I (3; 1) và chão trên đường thẳng $(\Delta_2): x - 2y + 4 = 0$ một đoạn bằng 4.

c.) Qua hai điểm E (-1; 2), F (-2; 3) và có tâm nằm trên đường thẳng $(\Delta_3): 3x - y + 10 = 0$.

d.) Qua hai điểm E (1; 2), F (3; 4) và tiếp xúc với đường thẳng $(\Delta_4): 3x + y - 3 = 0$.

e.) Có bán kính $R = \sqrt{10}$, tiếp xúc với đường thẳng (Δ_5):

$3x + y - 3 = 0$ và có tâm ở trên đường thẳng $(\Delta_5^{'})$: $x + y - 5 = 0$.

f.) Di qua M (1; 0) và tiếp xúc với hai đường thẳng (Δ_6):

$x + y = 2$ và $(\Delta_7): x + y + 3 = 0$.

g.) Di qua M (3; 1) và có bán kính $R = \sqrt{2}$ và tiếp xúc với đường thẳng $(\Delta_8): x + y - 1 = 0$

h.) Có bán kính $R = \sqrt{5}$ và nằm trong góc nhọn hợp bởi hai đường thẳng $(\Delta_9): 2x - y + 2 = 0$ và $(\Delta_{10}): 2x + y - 4 = 0$ và tiếp xúc với chúng.

i.) Có bán kính $R = 3\sqrt{5}$ và tiếp xúc với đường tròn (C):

$x^2 + y^2 = 5$ tại M(2; 1)

j.) Di qua M (4; -1) và tiếp xúc với đường tròn (C): $x^2 + y^2 = 5$ tại N(2; 1)

k.) Có tâm nằm trên đường thẳng $(\Delta_1): 2x - y = 0$ và tiếp xúc với hai đường thẳng $(\Delta_2): 3x - y + 3 = 0$ và $(\Delta_3): x - 3y + 9 = 0$.
1. a.) Lập phương trình của đường tròn đối xứng với đường tròn
(C): \(x^2 + y^2 - 2x - 6y - 6 = 0 \) qua đường thẳng \((\Delta): x + y + 1 = 0\).

b.) Lập phương trình của đường tròn là ảnh của đường tròn
(C): \(x^2 + y^2 - 2x - 6y + 5 = 0 \) qua phép vị tự tâm \(S(-1; 0)\), tỷ số
k = 2.

3. Cho họ \((C_m): x^2 + y^2 - 2(\cos \alpha - 2)x + 2(\sin \alpha)y - 2 = 0 \) (\(\alpha\) là tham số).

a.) Xác định \(\alpha\) để \((C_m)\) là đường tròn có bán kính nhỏ nhất, lớn nhất.

b.) Tìm quy tích tâm I của đường tròn \((C_\alpha)\) khi \(\alpha\) thay đổi.

4. Cho tam giác ABC với: A(-2; 1), B(3; -1), C(4; 2). Tìm quy tích điểm M sao cho: MA^2 + MB^2 = MC^2.

5. Cho đường tròn \((C): x^2 + y^2 - 3x - 4y + 5 = 0\). Lập phương trình tiếp tuyến \((\Delta)\) với \((C)\) biết:

a.) \((\Delta)\) tiếp xúc \((C)\) tại A(2; 3)

b.) \((\Delta)\) xuất phát từ B(4; 2).

6. Lập phương trình tiếp tuyến \((\Delta)\) của đường tròn \((C): x^2 + y^2 - 4x - 5 = 0\), biết \((\Delta)\) vuông góc với đường thẳng \((D): 12x + 5y + 2000 = 0\).

7. Viết phương trình tiếp tuyến chung của hai đường tròn:

\[
\begin{align*}
&x^2 + y^2 - 10x + 24y = 56 \\
&x^2 + y^2 - 2x - 4y = 20
\end{align*}
\]

8. Lập phương trình của đường thẳng đi qua M (2; 3) và cắt đường tròn \((C): x^2 + y^2 = 25\) thành dây cung có độ dài bằng 8.

9. Cho hai đường tròn: \((C_1): x^2 + y^2 - 2x - 6y + 15 = 0\)

\((C_2): x^2 + y^2 - 6x - 2y - 3 = 0\).

Tìm trên trực tùng những điểm M mà từ đó có thể kẻ tới hai đường tròn này những đoạn tiếp tuyến có độ dài bằng nhau (Đoạn tiếp tuyến là đoạn thẳng nối từ M tới tiếp điểm)

10. Tìm trên đường thẳng \((\Delta): x + y - 5 = 0\), những điểm mà từ đó có thể kẻ đến đường tròn \((C): x^2 + y^2 = 1\), những đoạn tiếp tuyến có độ dài ngắn nhất.

12. Đường tròn \((C)\) đi qua hai điểm A(3; 2), B(1; 4) và tiếp xúc với trực hoành. Tìm tiếp điểm.

13. Chứng minh rằng hệ đường tròn

\[
(C_m): x^2 + y^2 - 4mx - 2my + \frac{9}{2}m^2 - m - \frac{1}{2} = 0
\]

luôn luôn tiếp xúc với hai đường thẳng có định.

14. Cho họ đường tròn \((C_m): x^2 + y^2 - 2mx + 2my + 2m^2 - 1 = 0\)

a.) Chứng minh rằng các đường tròn \((C_m)\) luôn luôn bstånh nhau.

b.) Tùy theo m, biến luận vị trí của điểm A(0; 1) đối với các đường tròn \((C_m)\).

15. Cho hai đường tròn \((C_1): x^2 + y^2 - 4x - 6y + 4 = 0\)

\((C_2): x^2 + y^2 - 10x - 14y + 70 = 0\)

Chứng tỏ \((C_1)\) và \((C_2)\) tiếp xúc nhau, lập phương trình tiếp tuyến chung của chúng tại tiếp điểm.
DÁP SÓ

1. a.) \((x - 1)^2 + (y - 2)^2 = 5\)
 b.) \((x - 3)^2 + (y - 1)^2 = 9\)
 c.) \((x + 3)^2 + (y - 1)^2 = 5\)
 d.) \(x^2 + y^2 - 8x - 2y + 7 = 0; x^2 + y^2 - 3x - 7y + 12 = 0\)
 e.) \((x - 4)^2 + (y - 1)^2 = 10; (x + 6)^2 + (y - 11)^2 = 10\)
 f.) \((x + 3)^2 + (y - 1)^2 = \frac{25}{4}; (x - 5)^2 + (y + \frac{7}{2})^2 = \frac{25}{8}\)
 g.) \((x - 5 - \frac{\sqrt{3}}{2})^2 + (y - \frac{1 + \sqrt{3}}{2})^2 = 2; (x - 5 + \frac{\sqrt{3}}{2})^2 + (y - \frac{1 - \sqrt{3}}{2})^2 = 2\)
 h.) \((x - \frac{1}{2})^2 + (y - 8)^2 = 5; (x - \frac{1}{2})^2 + (y + 2)^2 = 5\)
 i.) \((x + 4)^2 + (y + 2)^2 = 45; (x - 8)^2 + (y - 4)^2 = 45\)
 j.) \((x - 6)^2 + (y - 3)^2 = 20\)
 k.) \((x - 1)^2 + (y - 2)^2 = \frac{8}{5}; (x - 3)^2 + (y - 6)^2 = \frac{18}{5}\)

2. a.) \((x + 4)^2 + (y + 2)^2 = 1\) b.) \((x - 3)^2 + (y + 6)^2 = 20\)

3. a.) \((C_a)\) là đường tròn với mọi \(a. R_{\min} khi \ a = k 2\pi, R_{\max} khi \ a = \pi + k 2\pi\)
 b.) \((x + 2)^2 + y^2 = 1\)

4. \(x^2 + y^2 + 6x + 4y - 5 = 0\) (đường tròn tâm I(-3; -2)), bán kính \(R = 3\sqrt{2}\)

5. a.) \(x + 2y - 8 = 0\) b.) \(x - 2y = 0, x + 2y - 8 = 0\)

6. \(5x - 12y - 49 = 0, 5x - 12y + 29 = 0\)

7. b.)

\[
(14 + 10\sqrt{7})x - 21y + (203 + 10\sqrt{7}) = 0 \\
(14 - 10\sqrt{7})x - 21y + (203 - 10\sqrt{7}) = 0
\]

8. \(y - 3 = 0; 12x + 5y + 39 = 0\)

9. M(0; -3)

10. M(\frac{5}{2}; \frac{5}{2})

11. \((\pm 5; 0)\)

12. (9; 0), (1; 0)

13. \(x - y + 1 = 0; x - 7y - 5 = 0\)

14. a.) \(R = 1, \forall m\)
 b.) \(m < -1 \lor m > 0): A \: \overset{o}{\text{ngoại}}(C_m); m = -1 \lor m = 0): A \: \overset{o}{\text{trên}}(C_m); 1 < m < 0): A \: \overset{o}{\text{trong}}(C_m)

15. \(3x + 4y - 33 = 0\)

BÀI 4

ELIP
A. TÓM TẮT LÝ THUYẾT

I. ĐỊNH NGHĨA
Trong mặt phẳng cho hai điểm cố định F_1 và F_2 với $F_1F_2 = 2c > 0$. Xét hàng số $2a > 2c$.

Elip $(E) = \{M \mid MF_1 + MF_2 = 2a\}$.

F_1 và F_2 là các tiêu điểm.

$F_1F_2 = 2c$ là tiêu cự.

Nếu $M \in (E)$ thì MF_1 và MF_2 được gọi là các bán kính qua tiêu cự của điểm M.

II. PHƯƠNG TRÌNH CHÍNH TÁC CỦA ELIP
Xét elip $(E) = \{M \mid MF_1 + MF_2 = 2a\}$, trong đó $F_1F_2 = 2c$.

Chọn hệ toạ độ Oxy sao cho $F_1(-c;0)$ và $F_2(c;0)$ (hình 1a)

Ta có: $M(x, y) \in (E) \iff \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(b^2 = a^2 - c^2)$.

Nên phương trình chính tác của elip là:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(b^2 = a^2 - c^2).$$

Chú ý:

a.) Trong phương trình trên ta có $a > b > 0$.

b.) Nếu $M(x, y) \in (E)$ thì các bán kính qua tiêu cự của điểm M là:

$$MF_1 = a + \frac{cx}{a} \text{ và } MF_2 = a - \frac{cx}{a}.$$

c.) Nếu ta chọn hệ toạ độ Oxy sao cho $F_1(0; -c)$ và $F_2(0; c)$ (hình 1b) thì elip (E) trên có phương trình:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(b^2 = a^2 - c^2; a > b > 0).$$

Cần chú ý rằng phương trình này không gọi là phương trình chính tác của elip.

III. HÌNH ĐẠNG CỦA ELIP
Xét elip $(E): \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(b^2 = a^2 - c^2; a > b > 0)$.

a.) Elip (E) có tâm đối xứng là O và có hai trục đối xứng là Ox và Oy.

b.) Elip (E) cắt Ox tại hai điểm $A_1(-a; 0)$ và $A_2(a; 0)$; cắt Oy tại hai điểm $B_1(0; -b)$ và $B_2(0; b)$. Bốn điểm đó được gọi là bốn đỉnh của elip.

Đoạn thẳng A_1A_2 được gọi là trục lớn còn đoạn thẳng B_1B_2 được gọi là trục bé của elip.

Ta gọi $2a$ là độ dài trục lớn còn $2b$ là độ dài trục bé của elip.
Chú ý rằng hai tiêu điểm của elip luôn nằm trên trục lớn.

c.) Nếu M (x, y) ∈ (E) thì −a ≤ x ≤ a và −b ≤ y ≤ b nên toàn bộ elip (E) thuộc hình chữ nhật giới hạn bởi bốn đường thẳng x = ± a và y = ± b. Hình chữ nhật đó được gọi là hình chữ nhật cơ sở của elip.

IV. TÂM SAI CỦA ELIP

Tâm sai của elip là tỉ số giữa biên và độ dài trục lớn của elip. Ký hiệu là e.

Ta có: \(e = \frac{c}{a} \)

Tâm sai của mọi elip đều bé hơn 1.

V. ĐƯỜNG CHUẨN CỦA ELIP

a.) Định nghĩa:

Cho elip (E):

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (b^2 = a^2 - c^2 => 0 < b < a) \]

(Phương trình chính tắc)

F₁ (-c; 0); F₂ (c; 0) Tíu điểm F₁ (0; -c); F₂ (0; c)

\[F₁F₂ = 2c \]

Ox Trục lớn Oy (tiêu điểm nằm trên trục lớn)

Oy Trục bé thuộc Ox

A₁ (a; 0); A₂ (a; 0) Định trên trục lớn A₁ (0; -a) ; A₂ (0; a)

B₁ (b; 0); B₂ (0; b) Định trên trục bé B₁ (-b; 0); B₂ (b; 0)

A₁A₂ = 2a Đọ dài trục lớn A₁A₂ = 2a

B₁B₂ = 2b Đọ dài trục bé B₁B₂ = 2b

e = \frac{c}{a} < 1 Tâm sai e = \frac{c}{a} < 1

r₁ = MF₁ = a + ex Bán kính qua tiêu r₁ = MF₁ = a + ey

r₂ = MF₂ = a − ex của điểm M ∈ (E) r₂ = MF₂ = a − ey

(\(\Delta₁ \)) : \(x = -\frac{a}{e} \) Đường chuẩn (\(\Delta₁ \)) : \(y = -\frac{a}{e} \)

Chú ý: Đường chuẩn luôn luôn vuông góc với trục lớn.

b.) Định lý: Tỉ số khoảng cách từ một điểm bất kỳ của elip đến một tiêu điểm và đường chuẩn tương ứng bằng tâm sai e của elip.

VI. TỔM TẮT
(Δ₂): \(x = \frac{a}{e} \) (vuông góc với trục lớn) \((Δ_2): y = \frac{a}{e} \)

\(x = \pm a; \ y = \pm b \) Phương trình các cạnh \(x = \pm b \ y = \pm a \)
của hình chữ nhật có số

O Tâm đối xứng: Ox; Oy
O Trực đối xứng: Ox; Oy

B. BÀI TẬP ÂP DỤNG

1. a.) Viết phương trình chính tắc của elip (E) có tiêu cự \(2c = 8 \), tâm sai \(e = \frac{4}{5} \)
 b.) Viết phương trình của elip (E) có tiêu điểm \(F_1(-1; -1) \), \(F_2(1; 1) \) và có độ dài trục lớn \(2a = 4 \).

Giải

a.) Phương trình chính tắc của elip (E) có dạng:

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (b^2 = a^2 - c^2).
\]

Ta có: \(2c = 8 \Rightarrow c = 4 \)
Và: \(e = \frac{4}{5} \Rightarrow \frac{c}{a} = \frac{4}{5} \Rightarrow a = 5 \) (vì \(c = 4 \))

\[
b^2 = a^2 - c^2 = 5^2 - 4^2 = 9.
\]

Vậy phương trình của elip (E) là: \(\frac{x^2}{25} + \frac{y^2}{9} = 1. \)

b.) Ta có: \(M(x, y) \in (E) \quad \Leftrightarrow MF_1 + MF_2 = 4\)
 \(\quad \Leftrightarrow (MF_1 + MF_2)^2 = 16 \)
 \(\quad \Leftrightarrow (MF_1 + MF_2)^2 - 16 = 0. \)

Mặt khác: \(|MF_1 - MF_2| < MF_1 + MF_2 = 4 \)
Nên: \((MF_1 + MF_2)^2 - 16 \neq 0. \)
Do đó dạng thức trên tương đương với:

\[
[(MF_1 + MF_2)^2 - 16][(MF_1 - MF_2)^2 - 16] = 0
\]
\[\begin{align*}
&\Rightarrow (MF_1^2 - MF_2^2) - 32(MF_1^2 + MF_2^2) + 16^2 = 0, \\
&\Rightarrow [x^2 + (y + 1)^2 - (x - 1)^2 - (y - 1)^2]^2 - 32[(x + 1)^2 + (y + 1)^2] + (x - 1)^2 + (y - 1)^2] + 16^2 = 0, \\
&\Rightarrow 4(x + y)^2 - 64(x^2 + y^2 + 2) + 16^2 = 0, \\
&\Rightarrow 3x^2 + 3y^2 - 2xy - 8 = 0.
\end{align*}\]

Vậy phương trình của elip (E) là: \(3x^2 + 3y^2 - 2xy - 8 = 0\).

2. Tìm điểm M trên elip (E): \(\frac{x^2}{25} + \frac{y^2}{9} = 1\). sao cho:

a.) MF_1 = 2MF_2.

b.) M nhìn hai tiêu điểm dưới một góc vuông.

c.) M nhìn hai tiêu điểm dưới một góc 60°.

Giải

Gọi \((x_0; y_0)\) là tọa độ của M. Ta có: \(M \in (E) \iff \frac{x_0^2}{25} + \frac{y_0^2}{9} = 1, (1)\)

Mặt khác: \(a^2 = 25, b^2 = 9 \Rightarrow c^2 = a^2 - b^2 = 16 \Rightarrow c = 4.\)

Nên: \(e = \frac{c}{a} = \frac{4}{5}.\)

a.) Ta có: MF_1 = 2MF_2 \(\iff a + ex_0 = 2(a - ex_0)\)

\(\iff 3ex_0 = a\)

\(\iff x_0 = \frac{a}{3e} = \frac{4}{3 \times \frac{4}{5}} = \frac{5}{12}.\)

Thể vào (1) ta suy ra:

\[y_0^2 = 9 \left(1 - \frac{\frac{25}{12^2}}{25}\right) = \frac{9 \times 119}{12^2} \iff y_0 = \pm \frac{3 \sqrt{119}}{12} = \pm \frac{\sqrt{119}}{4}\]

Vậy có hai điểm M thỏa mãn điều kiện của đề bài có tọa độ là:

\(\left(\frac{5}{12}; \pm \frac{\sqrt{119}}{4}\right)\)

b.) M nhìn hai tiêu điểm F_1 (-4; 0), F_2 (4; 0) dưới một góc vuông nên M ở trên đường tròn đường kính F_1F_2, do đó đường tròn tâm O có bán kính 4. Phương trình đường tròn này là: \(x^2 + y^2 = 16.\)

M ở trên đường tròn này nên: \(x_0^2 + y_0^2 = 16.\) (2)

Suy ra: \(y_0^2 = 16 - x_0^2.\)

Thay vào (1) ta được:

\[\frac{x_0^2}{25} + \frac{16 - x_0^2}{9} = 1. \iff x_0^2 = \frac{7 \times 25}{16} \iff x_0 = \pm \frac{5 \sqrt{7}}{4}\]

Suy ra: \(y_0^2 = 16 - x_0^2 = 16 - \frac{7 \times 25}{16} = \frac{81}{16} \iff y_0 = \pm \frac{9}{4}\)

Vậy bốn điểm M có tọa độ thỏa mãn điều kiện của đề bài có tọa độ là: \(\left(\pm \frac{5 \sqrt{7}}{4}; \pm \frac{9}{4}\right).\)
c.) M nhìn hai tiêu điểm dưới một góc 60° nên:
\[
F_1F_2^2 = MF_1^2 + MF_2^2 - 2MF_1 \cdot MF_2 \cos 60^\circ
\]
\[
\Rightarrow 4c^2 = (MF_1 + MF_2)^2 - 3MF_1 \cdot MF_2
\]
\[
\Rightarrow 4c^2 = 4a^2 - 3(a + ex_o)(a - ex_o)
\]
\[
\Rightarrow 4c^2 = 4a^2 - 3(a^2 - e^2x_o^2)
\]
\[
\Rightarrow 64 = 100 - 3\left(25 - \frac{16}{25}x_o^2\right)
\]
\[
\Rightarrow x_o^2 = \frac{25 \times 13}{26}
\]
\[
\Rightarrow x_o = \pm \frac{5 \sqrt{13}}{4}
\]
Thay \(x_o\) vào (1) ta được:
\[
y_o^2 = 9\left(1 - \frac{x_o^2}{25}\right) = 9\left(1 - \frac{13}{16}\right) = \frac{9 \times 13}{16} \Rightarrow y_o = \pm \frac{\sqrt{13}}{4}
\]
Vậy bốn điểm M có tọa độ thỏa mãn điều kiện của đề bài có tọa độ là: \(\left(\pm \frac{5 \sqrt{13}}{4}, \pm \frac{3 \sqrt{3}}{4}\right)\).

3. Cho elip (E): \(\frac{x^2}{25} + \frac{y^2}{16} = 1\). Tìm tọa độ các đỉnh của hình chữ nhật nội tiếp trong elip mà các cạnh song song với hai trục, có diện tích lớn nhất.

Gọi M\((x_o, y_o)\) là đỉnh hình chữ nhật nằm trong góc phần từ thửa nhất, thì \(x_o > 0, y_o > 0\). Mặt khác: M\(\in (E) \Leftrightarrow \frac{x^2}{25} + \frac{y^2}{16} = 1\).

Hình chữ nhật nội tiếp với hai trục nền bao đỉnh còn M qua Ox, O và Oy. Diện tích hình chữ nhật
\[
S = 2x_o \cdot 2y_o = 4 \times x_o \cdot y_o = 80 \begin{pmatrix} x_o \\ y_o \\ 4 \end{pmatrix}
\]
Áp dụng bất đẳng thức Cauchy:
\[
S = 80 \begin{pmatrix} x_o \\ y_o \\ 4 \end{pmatrix} \leq 40 \left[\left(\frac{x_o}{5}\right)^2 + \left(\frac{y_o}{4}\right)^2\right] = 40 \left[\frac{x_o^2}{25} + \frac{y_o^2}{16}\right] = 40 \text{ (do (1))}
\]
Đạng thức xảy ra khi:
\[
\left(\frac{x_o}{5}\right) = \left(\frac{y_o}{4}\right)
\]
Thể vào (1):
\[
\frac{x_o^2}{25} + \frac{y_o^2}{25} = 1 \Leftrightarrow x_o^2 = \frac{15}{1} \Leftrightarrow x_o = \frac{5 \sqrt{2}}{2} \text{ (vì } x_o > 0)\]
\[
y_o = \frac{4}{5} x_o = 2 \sqrt{2}\]
Vây S lớn nhất khi: \(x_o = \frac{5\sqrt{2}}{2} \) và \(y_o = 2\sqrt{2} \).

Tọa độ các đỉnh hình chữ nhật thỏa mãn điều kiện của đề bài là:

\[M\left(\frac{5\sqrt{2}}{2};2\sqrt{2}\right), N\left(\frac{5\sqrt{2}}{2};-2\sqrt{2}\right), P\left(-\frac{5\sqrt{2}}{2};-2\sqrt{2}\right), Q\left(-\frac{5\sqrt{2}}{2};2\sqrt{2}\right). \]

4. Cho elip (E): \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0). \)

a.) Chứng minh rằng với mọi điểm M thuộc elip, ta đều có:

\[b \leq OM \leq a. \]

b.) Gọi A là một giao điểm của đường thẳng \(y = kx \) với elip (E). Tính OA theo a, b, k.

c.) Gọi A, B là hai điểm thuộc elip sao cho OA \(\perp OB \). Chứng minh rằng:

\[\frac{1}{OA^2} + \frac{1}{OB^2} \] có giá trị không đổi.

Giải

a.) Gọi \((x_o, y_o)\) là tọa độ của điểm \(M \in (E) \) thì:

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. \]

Ta có: \(a > b > 0 \iff a^2 > b^2 > 0 \iff \frac{1}{a^2} < \frac{1}{b^2} \iff \frac{x^2}{a^2} > \frac{y^2}{b^2}. \)

Nên:

\[\frac{x^2}{b^2} + \frac{y^2}{b^2} \geq \frac{x^2}{a^2} + \frac{y^2}{a^2} = 1 \iff x_o^2 + y_o^2 \geq b^2. \]

Vậy: \(OM \geq b \) hay \(OM \geq b. \)

Tương tự: \(OM \leq a. \)

Tóm lại: \(b \leq OM \leq a. \)

b.) A là giao điểm của đường thẳng \(y = kx \) với elip (E) nên tọa độ của A là nghiệm của hệ

\[
\begin{align*}
\frac{x^2}{a^2} + \frac{y^2}{b^2} &= 1 \\
y &= kx
\end{align*}
\]

Suy ra:

\[
\begin{align*}
x^2 &= \frac{a^2b^2}{k^2}, \\
y^2 &= k^2x^2 = \frac{a^2b^2k^2}{b^2 + a^2k^2}.
\end{align*}
\]

Vậy:

\[OA^2 = \sqrt{\frac{a^2b^2(1 + k^2)}{b^2 + a^2k^2}}. \]

d.) Gọi k là hệ số góc của OA thì theo câu b.)

\[OA^2 = \frac{a^2b^2(1 + k^2)}{b^2 + a^2k^2}. \]

Vì \(OB \perp OA \) nên hệ số góc của OB sẽ là \(-\frac{1}{k}(k \neq 0) \) và do đó tương tự câu b.) ta có:

\[OB^2 = \frac{a^2b^2\left(1 + \frac{1}{k^2}\right)}{b^2 + a^2\frac{1}{k^2}} = \frac{a^2b^2\left(1 + k^2\right)}{b^2 + a^2k^2}. \]
Vậy:

\[
\frac{1}{OA^2} + \frac{1}{OB^2} = \frac{b^2 + a^2k^2}{a^2b^2(1+k^2)} = \frac{(a^2+b^2)(1+k^2)}{a^2b^2(1+k^2)} = \frac{1}{a^2} + \frac{1}{b^2}.
\]

Nếu \(k = 0 \) thì \(OA = a, OB = b \) nên đẳng thức trên vẫn đúng.

Vậy: \(\frac{1}{OA^2} + \frac{1}{OB^2} = \frac{1}{a^2} + \frac{1}{b^2}. \) (không đổi).

5. Tìm điểm M thuộc elip \((E): \frac{x^2}{9} + \frac{y^2}{4} = 1\). Có khoảng cách ngắn nhất tới đường thẳng \((\Delta): 3x + 4y + 24 = 0\).

Giải

Gọi \((x_o, y_o)\) là toạ độ của điểm M.

Ta có: \(M \in (E) \iff \frac{x_o^2}{9} + \frac{y_o^2}{4} = 1 \)

Khoảng cách từ M tới đường thẳng \((\Delta)\) là:

\[
d(M, \Delta) = 5 |3x_o + 4y_o + 24| = 5 \left| 9 \left(\frac{x_o}{3} \right) + 8 \left(\frac{y_o}{2} \right) + 24 \right|
\]

Áp dụng bất đẳng thức B.C.S ta có:

\[
9 \left(\frac{x_o}{3} \right) + 8 \left(\frac{y_o}{2} \right) \leq \sqrt{9^2 + 8^2} \sqrt{\frac{x_o^2}{9} + \frac{y_o^2}{4}} = \sqrt{145}
\]

\[
\iff -\sqrt{145} \leq 9 \left(\frac{x_o}{3} \right) + 8 \left(\frac{y_o}{2} \right) \leq \sqrt{145}
\]

\[
\iff 24 - \sqrt{145} \leq 9 \left(\frac{x_o}{3} \right) + 8 \left(\frac{y_o}{2} \right) + 24 \leq 24 + \sqrt{145}
\]

\[
\iff 24 - \sqrt{145} \leq \frac{24 - \sqrt{145}}{5} \leq \frac{24 + \sqrt{145}}{5}
\]

Vậy \(d(M, \Delta) = \frac{24 - \sqrt{145}}{5}. \) (2)

Ta có: \(d(M, \Delta) = \frac{24 - \sqrt{145}}{5} \)

Khi: \(\frac{3}{9} = \frac{2}{8} \iff \frac{x_o}{27} = \frac{y_o}{16} \) (3)

Giải hệ gồm (3) và (1) ta được: \(x_o = \pm \frac{27}{\sqrt{145}}, y_o = \pm \frac{16}{\sqrt{145}}. \)

Rõ ràng: \(x_o = -\frac{27}{\sqrt{145}}, y_o = -\frac{16}{\sqrt{145}} \) thỏa (2)
Tóm lại trên elip (E), điểm $M\left(\frac{-27}{\sqrt{145}}; -\frac{16}{\sqrt{145}}\right)$ có khoảng cách tới (Δ) ngắn nhất bằng $\frac{24 - \sqrt{145}}{5}$

C. BÀI TẬP THỰC TẬP
1. Viết phương trình chính tắc của elip (E) trong các trường hợp sau:
 a.) (E) đi qua $M\left(\frac{5}{4}; \sqrt{15}\right)$ và có hai tiêu điểm $F_1(-3; 0), F_2(3; 0)$.
 b.) (E) đi qua $M\left(2; -\frac{5}{3}\right)$ và có tâm sai $e = \frac{2}{3}$.
 c.) (E) có hai tiêu điểm $F_1(-6; 0), F_2(6; 0)$ và tâm sai $e = \frac{2}{3}$.
 d.) (E) có hai tiêu điểm $F_1(-6; 0), F_2(6; 0)$ và tỷ số hai trục là $\frac{a}{b} = \frac{5}{4}$.
 e.) (E) có trục lớn $2a = 8$ và khoảng cách giữa hai đỉnh liên tiếp là $A_1B_1 = 5$.
 g.) (E) qua hai điểm $M\left(\frac{3}{2}; \frac{-49}{7}; \frac{2}{9}\right)$ và $N\left(\frac{4}{3}; \frac{-8}{16}\right)$.
 i.) (E) có hai tiêu điểm trên Ox, khoảng cách giữa hai đường chuẩn là 5 và khoảng cách giữa hai tiêu điểm là 4.
 k.) (E) có tiêu điểm trên Ox, tâm sai $e = \frac{3}{4}$ và khoảng cách từ tâm đối xứng đến đường chuẩn là $\frac{16}{3}$.
 l.) (E) có đường chuẩn $3x \pm 3\sqrt{3} = 0$, độ dài trục nhỏ bằng 4.

2. Tìm hai điểm M, N trên elip (E): $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Sao cho A_2MN là tam giác đều.

3. Cho elip (E): $\frac{x^2}{9} + \frac{y^2}{4} = 1$, và hai đường thẳng (D): $ax - by = 0$, (D'): $bx + ay = 0$ với $a^2 + b^2 > 0$.
 a.) xác định các giao điểm M, N, P, Q lần lượt của (D) và (D') với (E).
 b.) tính diện tích tam giác MPNQ.
 c.) Tìm điều kiện đối với a, b để diện tích ấy lớn nhất, nhỏ nhất.

4. Cho elip (E): $\frac{x^2}{8} + \frac{y^2}{4} = 1$, và đường thẳng (D): $x - y\sqrt{2} + 2 = 0$. Đường thẳng (D) cắt (E) tại hai điểm B và C. Tìm điểm A trên elip (E) sao cho tam giác ABC có diện tích lớn nhất, nhỏ nhất. Tìm giá trị nhỏ nhất, lớn nhất đó.

5. Cho elip (E): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$. Gọi A, B là hai điểm thuộc elip sao cho OA \perp OB. Hãy xác định vị trí A, B trên elip để tam giác OAB có diện tích lớn nhất, nhỏ nhất. Tìm giá trị nhỏ nhất, lớn nhất đó.

ĐÁP SÓ
1.
II. PHƯƠNG TRÌNH CHÍNH TÁC CỦA HYPERBOL

BẢI 5

A. TÔM TẤT LÝ THUYẾT

I. ĐỊNH NGHĨA

Trong mặt phẳng cho hai điểm cố định F_1 và F_2 với F_1F_2 = 2c > 0. Xét hằng số 0 < 2a < 2c.

Hyperbol (H) = \{M \mid MF_1 - MF_2 = 2a\}.

F_1 và F_2 là các tiêu điểm.

F_1F_2 = 2c là tiêu cự.

Nếu M \in (E) thì MF_1 và MF_2 được gọi là các bán kính qua tiêu của điểm M.

II. PHƯƠNG TRÌNH CHÍNH TÁC CỦA HYPERBOL

Xét hyperbol (H) = \{M \mid MF_1 - MF_2 = 2a\}, trong đó F_1F_2 = 2c.

Chọn hệ tọa độ Oxy sao cho F_1 (-c;0) và F_2 (c;0)

Ta có: M (x, y) \in (E) \implies \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(b^2 = c^2 - a^2).
Nên phương trình chính tắc của hyperbol là: \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(b^2 = c^2 - a^2). \]

Chú ý:

a.) Nếu M (x, y) ∈ (E) thì các bán kính qua tiêu của điểm M là:

* x > 0: \[MF_1 = a + \frac{cx}{a} \text{ và } MF_2 = -a + \frac{cx}{a}. \]

* x < 0: \[MF_1 = -a - \frac{cx}{a} \text{ và } MF_2 = a - \frac{cx}{a}. \]

b.) Nếu ta chọn hệ toạ độ Oxy sao cho F_1 (0; -c) và F_2 (0; c) thì hyperbol (H) trên có phương trình:

\[\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1(b^2 = c^2 - a^2). \]

Cần chú ý rằng phương trình này không giống là phương trình chính tắc của hyperbol.

III. HÌNH ĐẠNG CỦA HYPERBOL

Xét hyperbol (H): \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(b^2 = c^2 - a^2). \]

a.) Hyperbol (H) có tâm đối xứng là O và có hai trục đối xứng là Ox và Oy.

b.) Hyperbol (H) cắt Ox tại hai điểm A_1 (-a; 0) và A_2 (a; 0), chúng được gọi là đỉnh của Hyperbol. Ox được gọi là trục thực của hyperbol.

Hyperbol không cắt trục Oy, trục này gọi là trục ảo của hyperbol.

Ta gọi 2a là độ dài trục thực còn 2b là độ dài trục ảo của hyperbol.

Chú ý rằng hai tiêu điểm của hyperbol luôn nằm trên trục thực.

b.) Nếu M (x, y) ∈ (E) thì \[x \leq -a \text{ hoặc } x \geq a \] nên hyperbol gồm hai nhánh: nhánh phải gồm những điểm nằm bên phải đường thẳng \[x = a, \] và nhánh trái gồm những điểm nằm bên trái đường thẳng \[x = -a. \]

IV. ĐƯỜNG TIỀM CẤN CỦA HYPERBOL

Hyperbol (H): \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(b^2 = c^2 - a^2) \] có hai đường tiệm cận là:

\[y = \pm \frac{b}{a} x. \]

Chú ý:

Từ hai đỉnh của (H) ta vẽ hai đường thẳng song song với Oy, Chúng cắt hai đường tiệm cận tại bốn điểm: P, Q, R, S. Đồ là bốn đỉnh của một hình chữ nhật, gọi là hình chữ nhật cơ sở của hyperbol. Các cạnh của hình chữ nhật đó là 2a và 2b, đường chéo là 2c.

V. TÂM SIÊU CỦA HYPERBOL

Tâm siêu của hyperbol là tọa độ tiêu cực và độ dài trục thực của hyperbol. Ký hiệu là e.

Ta có: \[e = \frac{c}{a} \]

Tâm siêu của mọi elip đều lớn hơn 1.

VI. ĐƯỜNG CHUẨN CỦA HYPERBOL

a.) Định nghĩa:
Cho hyperbol (H): \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \). Hai đường thẳng \((\Delta_1)\): \(x = -\frac{a}{e} \) và \((\Delta_2)\): \(x = \frac{a}{e} \) được gọi là các đường chuẩn của hyperbol.

\((\Delta_1)\) được gọi là các đường chuẩn ứng với tiêu điểm \(F_1 \).

\((\Delta_2)\) được gọi là các đường chuẩn ứng với tiêu điểm \(F_2 \).

* Chú ý: Đường chuẩn luôn luôn vuông góc với trục thực.

b.) Định lý: Tỉ số khoảng cách từ một điểm bất kỳ của elip đến một tiêu điểm và đường chuẩn tương ứng đường băng tâm sai e của hyperbol.

VI. TÓM TẮT

\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \quad (b^2 = a^2 - c^2 \geq 0 < b < a) \quad \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \)

(Phương trình chính tọa)

\(F_1 (-c; 0); F_2 (c; 0) \) Tiêu điểm \(F_1 (0; -c); F_2 (0; c) \)

\(F_1 F_2 = 2c \) T裁判 \(F_1 F_2 = 2c \)

\(Ox \) Trục thực thuộc \(Oy \) (tiêu điểm nằm trên trục thực)

\(Oy \) Trục ảo thuộc \(Ox \)

\(A_1 (-a; 0) \) Dính \(A_1 (0;-a) \); \(A_2 (0; a) \)

\(A_1A_2 = 2a \) Đồ dài thực thuộc \(B_1B_2 = 2b \) Đồ dài ảo thuộc

\(e = \frac{c}{a} > 1 \) Tâm sai \(e = \frac{c}{a} > 1 \)

\(x > 0: \ r_1 = MF_1 = a + ex \) Bán kính qua tiêu điểm \(y > 0: \ r_1 = MF_1 = a + ey \)

\(r_2 = MF_2 = -a + ex \) Của điểm \(M \in (H) \)

\(r_2 = MF_2 = -a + ey \)

\(x < 0: \ r_1 = MF_1 = -a - ex \) \(y < 0: \ r_1 = MF_1 = -a - ey \)

\(y = \pm \frac{b}{a} x \) Đường tiệm cận \(y = \pm \frac{a}{b} x \)

\((\Delta_1)\): \(x = -\frac{a}{e} \) Đường chuẩn \((\Delta_1)\): \(y = -\frac{a}{e} \)

\((\Delta_2)\): \(x = \frac{a}{e} \) (vuông góc với trục thực) \((\Delta_2)\): \(y = \frac{a}{e} \)

\(x = \pm a; y = \pm b \) Phương trình các cạnh \(x = \pm b \) \(y = \pm a \)

của hình chữ nhật có số

\(O \) Tầm đối xứng \(O \)

\(Ox; Oy \) Trục đối xứng \(Ox; Oy \)
B. BÀI TẬP ÁP DỤNG

1. a.) Viết phương trình chính tắc của hyperbol (H) có hai đường
Tiệm cận: 4x ± 3y = 0 và hai đường chuẩn: 5x ± 9 = 0.

b.) Viết phương trình của hyperbol (H) có tiêu điểm F₁(-1; 2), F₂(2; -2) và độ dài đai trục thực 2a = 4.

Giải

a.) Phương trình chính tắc của hyperbol (H) có dạng:

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(b^2 = c^2 - a^2).\]

Hai đường tiệm cận: 4x ± 3y = 0 hay: \(y = \pm \frac{4}{3} x \) nên: \(\frac{b}{a} = \frac{4}{3} \) (1)

Hai đường chuẩn: 5x ± 9 = 0 hay \(x = \pm \frac{9}{5} \) nên: \(\frac{a}{c} = \frac{9}{5} \) (2)

Từ (1) ta có: \(\frac{a}{3} = \frac{b}{4} \) hay \(\frac{a^2}{9} = \frac{b^2}{16} \) từ (1) và (2) ta suy ra: \(\frac{a^2}{81} = \frac{a^2}{9} \) hay: \(a^2 = 9. \)

Vậy: \(b^2 = 16. \)

Vậy phương trình chính tắc của hyperbol (H) là: \(\frac{x^2}{9} - \frac{y^2}{16} = 1 \)

b.) Ta có: M (x, y) ∈ (H) \(\iff \left| MF_1 - MF_2 \right| = 4 \)

\[\iff (MF_1 - MF_2)^2 = 16 \]

\[\iff (MF_1 - MF_2)^2 - 16 = 0 \]

Mặt khác: \(4 = \left| MF_1 - MF_2 \right| < MF_1 + MF_2. \)

Nên: \((MF_1 + MF_2)^2 - 16 \neq 0 \)

Do đó đẳng thức trên thường rộng với:
\[
\begin{align*}
\left[(MF_1 - MF_2)^2 - 16 \right] \left[(MF_1 + MF_2)^2 - 16 \right] &= 0 \\
\iff (MF_1^2 - MF_2^2)^2 - 32(MF_1^2 + MF_2^2) + 16^2 &= 0 \\
\iff (6x - 8y - 3)^2 - 32(2x^2 + 2y^2 - 2x + 13) + 256 &= 0 \\
\iff 28x^2 + 96xy - 28x - 48y + 151 &= 0
\end{align*}
\]

Vậy phương trình của hyperbol (H) là:
\[
28x^2 + 96xy - 28x - 48y + 151 = 0
\]

2. Cho đường tròn (C): \(x^2 + y^2 = 1\), cắt trục tùng ở A (0; 1) và B (0; -1). Đường thẳng \(y = m\ (-1 < m < 1, m \neq 0)\) cắt (C) ở T và S. Đường thẳng AT cắt đường thẳng BS tại P. Tímh tập hợp các điểm P khi m thay đổi.

Giải

Tọa độ giao điểm S và T là nghiệm của hệ:
\[
\begin{align*}
x^2 + y^2 &= 1 \\
y &= m
\end{align*}
\]
Giải hệ này ta suy ra: \(T(-\sqrt{1-m^2};m)\) và \(S(\sqrt{1-m^2},m)\).

Phương trình của đường thẳng AT:
\[
(1-m)x - \sqrt{1-m^2}y + \sqrt{1-m^2} = 0 \quad (1)
\]

Tương tự phương trình của đường thẳng BS là:
\[
(1+m)x - \sqrt{1-m^2}y - \sqrt{1-m^2} = 0 \quad (2)
\]

Tọa độ giao điểm P là nghiệm của hệ gồm (1) và (2).

Giải hệ này ta được:
\[
P\left\{ \begin{array}{l}
x = \frac{\sqrt{1-m^2}}{m} \\
y = \frac{1}{m}
\end{array} \right.
\]

Khử m giữa tọa độ của P ta được: \(y^2 - x^2 = 1\)

Vì \(y = \frac{1}{m}\) mà \(-1 < m < 1\) và \(m \neq 0\) nên: \(y < -1\) hay \(y > 1\).

Vậy tập hợp các điểm P là hyperbol (H): \(y^2 - x^2 = 1\), bờ đi hai đỉnh.

3. Cho hyperbol (H): \(x^2 - 4y^2 + 4 = 0\).

a.) Tìm những điểm trên (H) có tọa độ là những số nguyên.

b.) Đường thẳng (D) qua A (4; 1) cắt (H) tại hai điểm phân biệt M, N sao cho a là trung điểm đoạn MN.

Xác định tọa độ M, N.

Giải

a.) Goi I \((x_0, y_0)\) là điểm cần tìm trên (H) và \(x_0, y_0 \in \mathbb{Z}\).

Ta có: \(I \in (H) \iff x_0^2 - 4y_0^2 + 4 = 0 \quad (1)\)
\[
\iff (2y_0 - x_0)(2y_0 + x_0) = 4
\]
Nhận xét nếu \((x_0, y_0)\) thỏa (I) thì \((-x_0, y_0), (x_0, -y_0), (-x_0, -y_0)\) cũng thỏa (1), nên ta chỉ cần xét trường hợp \(x_0, y_0 \in \mathbb{Z}^+\).

Lúc đó: \(2y_0 - x_0 \leq 2y_0 + x_0\) và \(2y_0 - x_0\) với \(2y_0 + x_0\) cũng thỏa (1), nên ta chỉ cần xét trường hợp \(x_0, y_0 \in \mathbb{Z}^+\).

Vậy hai điểm trên (H) có tọa độ là các số nguyên: \((0, 0)\).

b.) gọi \((x_1, y_2), (x_2, y_2)\) lần lượt là tọa độ của M, N.

Ta có: M, N \(\in (H)\) nên: \(x_1 + x_2 = 8\) (3)

\(y_1 + y_2 = 2\) (4)

Từ (3) và (4) ta suy ra: \(x_2 = 8 - x_1\) (5)

\(y_2 = 2 - y_1\) (6)

Thể vǎo (2) ta được: \((8 - x_1)^2 - 4(2 - y_1)^2 + 4 = 0\)

\(x_1^2 - 16x_1 - 4y_1^2 + 16 = 0\) và \(-16x_1 + 16y_1 + 48 = 0\) do (1)

\(-x_1 + y_1 + 3 = 0\)

Suy ra: \(y_1 = x_1 - 3\) (7)

Thể vǎo (1) ta được: \(x_1^2 - 4(x_1 - 3)^2 + 4 = 0\)

\(3x_1^2 - 24x_1 + 32 = 0\)

Giải phương trình này ta suy ra: \(x_1 = \frac{12 \pm 4\sqrt{3}}{3}\).

Nếu \(x_1 = \frac{12 + 4\sqrt{3}}{3}\) thì thể vǎo (7) ta được: \(y_1 = \frac{3 + 4\sqrt{3}}{3}\) và do từ (5) và (6) ta suy ra: \(x_2 = \frac{12 - 4\sqrt{3}}{3}\), \(y_2 = \frac{3 + 4\sqrt{3}}{3}\).

Nếu \(x_1 = \frac{12 - 4\sqrt{3}}{3}\) thì tương tự ta có:

\(y_1 = \frac{3 - 4\sqrt{3}}{3}, x_2 = \frac{12 + 4\sqrt{3}}{3}, y_2 = \frac{3 + 4\sqrt{3}}{3}\).

Tóm lại, tọa độ của M, N là: \(\left(\frac{12 + 4\sqrt{3}}{3}; \frac{3 + 4\sqrt{3}}{3}\right), \left(\frac{12 - 4\sqrt{3}}{3}; \frac{3 - 4\sqrt{3}}{3}\right)\).

4. Cho hyperbol (H): \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\). Chứng minh rằng:
a.) Hình chiếu vuông góc của tiêu điểm lên các tiệm cận nằm trên đường chuẩn ứng với tiêu điểm đó.

b.) Tính các khoảng cách từ một điểm bất kỳ trên (H) đến hai đường tiệm cận là một hằng số.

c.) Diện tích hình bình hành xác định bởi hai tiệm cận và hai đường thẳng phát xuất từ một điểm trên (H) song song với hai đường thẳng từ tiêu điểm là một hằng số.

Giải

a.) Do tính đối xứng của hyperbol (H) ta chỉ cần chứng minh hình chiếu vuông góc của tiêu điểm $F_1(-c; 0)$ trên đường tiệm cận (D_1):

$$y = -\frac{b}{a}x \text{ hay } bx + ay = 0,$$

nằm trên đường chuẩn Δ_1: $x = -\frac{a}{e} = -\frac{a^2}{c}$.

Gọi I là giao điểm của (D_1) và (Δ_1) thì tọa độ của I là nghiệm của hệ:

$$\begin{cases}
y = -\frac{b}{a}x \\
x = \frac{a^2}{c}
\end{cases}$$

Suy ra: $I \left(-\frac{a^2}{c}; \frac{ab}{c} \right)$.

Ta có: $\vec{OI} = \left(-\frac{a^2}{c}; \frac{ab}{c} \right), \vec{FI} = \left(-\frac{a^2}{c} + c; \frac{ab}{c} \right)$.

Suy ra: $\vec{OI} \cdot \vec{FI} = -\frac{a^2}{c} \left(-\frac{a^2}{c} + c \right) + \frac{ab}{c} \left(-\frac{a^2}{c} + c \right) - \frac{ab}{c} \left(-\frac{a^2}{c} + c \right) + \frac{a^2b^2}{c^2} + \frac{a^2b^2}{c^2} = 0$.

Vậy hình chiếu vuông góc của F_1 trên (D_1) nằm trên đường chuẩn (Δ_1).

b.) (H) có hai tiệm cận: $(D_1): bx + ay = 0$

$(D_2): bx - ay = 0$.

Gọi $M(x_0; y_0)$ là một điểm bất kỳ trên (H).

Khoảng cách từ M tới $(D_1), (D_2)$ là:

$$d(M, D_1) = \frac{|bx_0 + ay_0|}{\sqrt{a^2 + b^2}}; d(M, D_2) = \frac{|bx_0 - ay_0|}{\sqrt{a^2 + b^2}}$$

Suy ra: $d(M, D_1), d(M, D_2) = \frac{b^2x_0^2 - a^2y_0^2}{a^2 + b^2}$.

Mà $M(x_0, y_0) \in (H)$ nên $\frac{x_0^2}{a^2} - \frac{y_0^2}{b^2} = 1$ hay $b^2x_0^2 - a^2y_0^2 = a^2b^2$.

Vậy: $d(M, D_1), d(M, D_2) = \frac{a^2b^2}{a^2 + b^2}$ (không đổi).

c.) Lấy điểm $M(x_0; y_0) \in (H)$. Gọi P, Q lần lượt là giao điểm của đường thẳng qua M song song với (D_2), cắt (D_1), và của đường thẳng qua M song song với (D_1), cắt (D_2).
Ta có: $MP// (D_2)$

Nên phương trình của MP có dạng: $bx - ay + C = 0$

MP đi qua $M(x_o; y_o)$ nên:

$$bx_o - ay_o + C = 0 \iff C = ay_o - bx_o$$

Vậy phương trình đường thẳng MP: $bx - ay + (ay_o - bx_o) = 0$

Toạ độ giao điểm P của MP với (D_1) là nghiệm của hệ:

$$\begin{cases} bx + ay = 0 \\ bx - ay + (ay_o - bx_o) = 0 \end{cases}$$

Giải hệ này ta suy ra: $P\left(\frac{bx_o - ay_o}{2b}; \frac{ay_o - bx_o}{2a}\right)$

Khoảng cách từ M tới (D_1) là:

$$d(M, (D_1)) = \sqrt{\left(\frac{bx_o + ay_o}{2b}\right)^2 + \left(\frac{ay_o - bx_o}{2a}\right)^2} = \sqrt{\frac{(bx_o + ay_o)^2}{a^2 + b^2}}$$

Diện tích hình bình hành OPMQ:

$$S = OP.d(M, (D_1)) = \sqrt{\left(\frac{bx_o + ay_o}{2b}\right)^2 + \left(\frac{ay_o - bx_o}{2a}\right)^2}$$

Mà: $M(x_o; y_o) \in (H) \iff \frac{x_o^2}{a^2} - \frac{y_o^2}{b^2} = 1 \iff b^2x^2 - a^2y^2 = a^2b^2$.

Nên:

$$S = \frac{a^2b^4}{4a^2(a^2 + b^2)} + \frac{a^4b^4}{4a^2(a^2 + b^2)} = \frac{a^2b^2}{4} \left(\frac{a^2 + b^2}{a^2 + b^2}\right) = \frac{ab}{2}$$ (hàng số)

5. Tìm khoảng cách ngắn nhất giữa $(\Delta): 4x - 5y - 32 = 0 \text{ và } (H): y = \sqrt{x^2 + 9}$.

Giải

Lấy $(x_o; y_o) \in (H)$ ta có: $y_o = \sqrt{x_o^2 + 9}$ (1)

Khoảng cách từ M tới đường thẳng (Δ):

$$D = \frac{1}{\sqrt{41}}|4x_o - 5y_o - 32| = \frac{1}{\sqrt{41}}|4x_o - 5\sqrt{x_o^2 + 9} - 32|$$ (do (1))

Khoảng cách ngắn nhất giữa $(\Delta)\text{ và } (H)$ chính là giá trị nhỏ nhất của d:

57
Đặt: \(f(x_0) = 4x_0 - 5 \sqrt{x_0^2 + 9} - 32 \).

Ta có: \(f'(x_0) = 4 \frac{5x_0}{ \sqrt{x_0^2 + 9} } = \frac{4 \sqrt{x_0^2 + 9} - 5x_0}{ \sqrt{x_0^2 + 9} } \)

Xét đầu \(f'(x_0) \):

- Nếu \(x_0 \leq 0 \) thì \(f'(x_0) > 0 \).
- Nếu \(x_0 > 0 \) thì \(4 \sqrt{x_0^2 + 9} > 5x_0 > 0 \) nên \(f'(x_0) \) cùng đầu với:
 \[
 \left[4 \sqrt{x_0^2 + 9} - 5x_0 \right] \left[4 \sqrt{x_0^2 + 9} + 5x_0 \right] = 16(x_0^2 + 9) - 25x_0^2 = 9(16 - x_0^2)
 \]

Xét đầu \(16 - x_0^2 \) khi \(x_0 > 0 \)

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(-\infty)</th>
<th>(-4)</th>
<th>0</th>
<th>4</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(16 - x_0^2)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>0</th>
<th>4</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x_0))</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>(f(x_0))</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

Vậy: \(\min d = \sqrt{41} \)

6. Cho hyperbol \((H): \frac{x^2}{4} - \frac{y^2}{9} = 1 \). Gọi \((D)\) là đường thẳng đi qua gốc tọe O và có hệ số góc k xác định và khác 0, \((D')\) là đường thẳng đi qua O và vuông góc với \((D)\).

a.) Tìm điều kiện đối với k để \((D)\) và \((D')\) đều cắt \((H)\).

b.) Tìm theo k diện tích hình thoi có bốn đỉnh là bốn giao điểm của \((D)\) và \((D')\) với \((H)\).

c.) Xác định k để hình thoi ấy có diện tích nhỏ nhất.

Giải

a.) Phương trình của \((D): y = kx\)

\((D)\) cắt \((H)\) thì phương trình sau có nghiệm:

\[
\frac{x^2}{4} - \left(\frac{k^2}{9} \right) x^2 = 1 \iff 9x^2 - 4k^2x^2 = 36 \iff \left(9 - 4k^2 \right)x^2 = 36
\]

Diệu độ xảy ra khi: \(9 - 4k^2 > 0 \iff -\frac{3}{2} < k < \frac{3}{2} \quad (k \neq 0) \) (1)

\((D')\) vuông góc với \((D)\) nên có hệ số góc: \(-\frac{1}{k}\).

Trong (1) thay k bởi: \(-\frac{1}{k}\), ta có \((D')\) cắt \((H)\) khi:

\[
-\frac{3}{2} < \frac{1}{k} < \frac{3}{2} \iff \left| k \right| < \frac{3}{2} \iff \frac{2}{3} < k < \frac{2}{3} \Ve k > \frac{2}{3} \quad (2)
\]
Từ (1) và (2) ta suy ra (D) và (D’) đều cắt (H) khi:
\[-\frac{3}{2} < k < -\frac{2}{3} \text{ hay } \frac{2}{3} < k < \frac{3}{2}\] (3)

b.) ta có (D) cắt (H) tại điểm M, N có tọa độ thỏa:
\[x^2 = \frac{36}{9 - 4k^2}; y^2 = \frac{36k^2}{9 - 4k^2}\]
(D’) cắt (H) tại điểm P, Q có tọa độ thỏa:
\[x^2 = \frac{36}{9 - 4\left(-\frac{1}{k}\right)^2}; y^2 = \frac{36\left(-\frac{1}{k}\right)^2}{9 - 4\left(-\frac{1}{k}\right)^2} = \frac{36}{9k^2 - 4}\]

Diện tích hình thoi MPNQ:
\[S = 2OM\cdot OP = 2\sqrt{\frac{36}{9 - 4k^2} + \frac{36k^2}{9k^2 - 4} + \frac{36}{9k^2 - 4}} = \frac{72(1 + k^2)}{\sqrt{(9 - 4k^2)(9k^2 - 4)}} \quad (\text{dvdt})\]

c.) Ta có S > 0 nên S nhỏ nhất khi và chỉ khi S^2 nhỏ nhất:
\[z = S^2 = \frac{72^2(1 + k^2)^2}{(9 - 4k^2)(9k^2 - 4)}\]

Đặt t = k^2 thì do (3) ta có \(\frac{4}{9} < t < \frac{9}{4}\) và:
\[z = \frac{72^2(1 + k^2)^2}{(9 - 4k^2)(9k^2 - 4)} = 72^2\left(\frac{t^2 + 2t + 1}{-36t^2 + 97t - 36}\right)\]

Đạo hàm \(z' = 72^2\left[\frac{169(t^2 + 1)}{-36t^2 + 97t - 36}\right]\)

Ta có: \(z' = 0\) khi \(t = 1\) và \(t \in \left(\frac{4}{9}; \frac{9}{4}\right)\)

Xét đầu \(z'\): ta có \(z'\) cùng dấu với \(t^2 - 1\) nên:

<table>
<thead>
<tr>
<th>t</th>
<th>(\frac{4}{9})</th>
<th>1</th>
<th>(\frac{9}{4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>z’</td>
<td>–</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

Vậy \(z\) đạt cực trị duy nhất khi \(t = 1\) \(\Rightarrow z\) đạt giá trị nhỏ nhất khi \(t = 1\) hay \(k^2 = 1\)

Suy ra S nhỏ nhất khi \(k = \pm 1\).

C. BÀI TẬP THỰC TẬP

1. Viết phương trình chính tắc của hyperbol (H) trong các trường hợp:
 a.) (H) có tiêu điểm \(F_1(-3\sqrt{5};0), F_2(3\sqrt{5};0)\) và đi qua \(M(5\sqrt{2};2\sqrt{5})\)
 b.) (H) đi qua \(A(4\sqrt{2};3)\) và có cùng tiêu điểm với elip (E):
c.) (H) đi qua M (-5; 3) và có tâm sai e = \sqrt{2}
d.) (H) có trục ax trên Ox và có độ dài bằng 6 và tiêu cực bằng 10.
e.) (H) có khoảng cách giữa hai đỉnh bằng 6 và đi qua A (6; -2\sqrt{3})
g.) (H) đi qua M (24; 5) và có hai tiệm cận là 5x ± 12y = 0
h.) (H) đi qua hai điểm A (4; \sqrt{6}), B (6; -1)
i.) (H) có độ dài nửa trục thực bằng 3 và đi qua điểm (6; 2\sqrt{3})
j.) (H) đi qua M (6; 3) và góc giữa hai tiệm cận bằng 60°.
k.) (H) đi qua M (\frac{4\sqrt{34}}{5}; \frac{9}{5}) và nhìn hai tiêu điểm trên Ox dưới một góc vuông.
l.) (H) đi qua M (\frac{4\sqrt{5}}{3}; \frac{2}{3}) và nhìn hai tiêu điểm trên Ox dưới một góc 60°.
m.) (H) có hai đường tiệm cận 3x ± 4y = 0 và hai đường chuẩn 5x ± 16 = 0.

2. Tìm tập hợp tâm của đường tròn:
 \[x^2 + y^2 - 2x \tan t - \frac{6}{\cos t}y + \sin t - 1 = 0, t = \frac{\pi}{2} + k\pi, k \in Z. \]

3. Một đường thẳng (D) lưu động cắt trục hoành và trục tung lần lượt tại A, B sao cho tam giác OAB có diện tích không đổi bằng S. Tìm quý thích các điểm M ở trên (D) sao cho: \(MA = k.MB \) (k là hằng số khác 0 và khác 1).

4. Tìm những điểm trên hyperbol (H): \(9x^2 - 16y^2 - 144 = 0 \), nhìn hai tiêu điểm dưới một góc 120°.

5. Cho hyperbol (H): \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) và một điểm M thuộc (H). Chứng minh:
 a.) OM² - F₁M.F₂M = a² - b².
 b.) (F₁M + F₂M)² = 4(OM² + b²)

DÁP SÓ

1. a.) \(\frac{x^2}{25} - \frac{y^2}{20} = 1 \) b.) \(\frac{x^2}{16} - \frac{y^2}{9} = 1 \) c.) \(x^2 - y^2 = 16 \)
d.) \(\frac{x^2}{16} - \frac{y^2}{9} = 1 \) e.) \(\frac{x^2}{9} - \frac{y^2}{4} = 1 \) hay \(\frac{x^2}{9} - \frac{y^2}{108} = 1 \)
j.) \(\frac{x^2}{9} - \frac{y^2}{3} = 1 \) hay \(\frac{x^2}{33} - \frac{y^2}{99} = 1 \) k.) \(\frac{x^2}{16} - \frac{y^2}{9} = 1 \)
l.) \(\frac{x^2}{8} - \frac{y^2}{4} = 1 \) m.) \(\frac{x^2}{16} - \frac{y^2}{9} = 1 \)

2. a.) \(\frac{x^2}{4} + y^2 = 1 \) b.) \(\frac{y^2}{4} + x^2 = 1 \)
3. \(xy = \pm \frac{2ks}{(1-k)^2} \)

4. \(\left(\pm \frac{8\sqrt{7}}{5}, \pm \frac{3\sqrt{3}}{5} \right) \).

BÀI 6
PARABOL

A. TÓM TÀT LÝ THUYẾT

I. ĐỊNH NGHĨA

Cho một đường thẳng \((\Delta)\) cố định và một điểm \(F\) cố định không thuộc \((\Delta)\).
Parabol \((P) = \{M \mid MF = d(M, \Delta)\}\).

F là tiêu điểm

\((\Delta)\) là đường chuẩn

\(D(F, \Delta) = p\) là tham số tiêu

MF là bán kính qua tiêu của điểm M.

II. PHƯƠNG TRÌNH CHÍNH TÂC CỦA PARABOL

Xét parabol: \((P) = \{M \mid MF = d(M, \Delta)\}\)

Chọn hệ tọa độ Oxy như sau: Trục Ox là đường thẳng đi qua F và vuông góc với \((\Delta)\), hướng dương từ P đến F \(\{P\} = Ox \cap (\Delta)\). Trục Oy là trục doan PF. Gốc tọa độ O là trung điểm PF.

Ta có: \(F\left(\frac{p}{2}; 0\right); (\Delta): x = \frac{-p}{2}\)

Và: \(M(x, y) \in (P) \Leftrightarrow y^2 = 2px\)

Vậy phương trình chính tắc của parabol là:

\(y^2 = 2px\).

Chú ý: Nếu \(M(x, y) \in (P)\) thì bán kính qua tiêu của điểm M là:

\(MF = x + \frac{p}{2}\)

III. HÌNH DẠNG CỦA PARABOL

Xét parabol \((P): y^2 = 2px\)

a.) Parabol \((P)\) có trục đối xứng là Ox.

b.) Giao của parabol \((P)\) với parabol, đó chính là điểm O.

c.) Các điểm của parabol đều nằm phía bên phải trục Oy.

IV. TÂM SAI CỦA PARABOL
Tâm sai của parabol luôn luôn bằng 1.

B. BÀI TẬP ÁP DỤNG

1. Viết phương trình của parabol (P) có tiêu điểm F(3; -1) và đường chuẩn (Δ) : x – 2y + 1 = 0.

Giải

Ta có: M (x, y) (P) ⇔ MF = d(M, Δ)

⇔ \(\sqrt{(x-3)^2 + (y+1)^2} = \frac{|x - 2y + 1|}{\sqrt{5}} \)

⇔ 5\((x-3)^2 + (y+1)^2\) = (x – 2y + 1)²

⇔ 4x² + y² + 4xy – 32x + 14y + 49 = 0

Vậy phương trình của (P) là:

4x² + y² + 4xy – 32x + 14y + 49 = 0

2. Cho parabol (P): x² = 4y và đường thẳng (D): x – 2y + 4 = 0

a.) Tìm tọa độ giao điểm A, B của (P) và (D).

b.) Tìm điểm M trên cung AB của (P) sao cho tổng diện tích hai phần hình phẳng giới hạn bởi (P) và hai dây cung MA, MB nhỏ nhất.

Giải

a.) Tọa độ giao điểm A, B của (P) và (D) là nghiệm của hệ:

\[\begin{align*}
 x^2 &= 4y \\
 x - 2y + 4 &= 0
\end{align*} \]

Giải hệ này ta suy ra: A(x-2, 1) , B(4, 4)

b.) Gọi (x₀, y₀) là tọa độ của điểm M trên cung AB cửa parabol (P).

Ta có: x₀² = 4y₀ è (1)

Và: \(-2 \leq x₀ \leq 4 \) è (2)

Ta có diện tích hình phẳng giới hạn bởi (P) và (D) là không đổi. Nên : diện tích phần hình phẳng đề cập trong đề bài sẽ nhỏ nhất khi diện tích tam giác MAB lớn nhất.

Diện tích tam giác MAB:

\[S = \frac{1}{2} \cdot AB \cdot d(M, (D)) = \frac{1}{2} \cdot 3 \cdot d(M, (D)) \]

Nên S lớn nhất khi d(M, (D)) lớn nhất:

Ta có: d(M, (D)) = \(\frac{1}{5} |x₀ - 2y₀ + 4| \)

\[= \frac{1}{5} |x₀ - \frac{x₀²}{2} + 4| \] è (1)

Mà: \(-\frac{x₀²}{2} + x₀ + 4 \geq 0 \) è do(2)

Nên : d =
$$\frac{1}{5} \left(-\frac{x_o^2}{2} + x_o + 4 \right) = \frac{1}{10} \left(-\frac{x_o^2}{2} + 2x_o + 8 \right) = \frac{1}{10} \left[-(x_o - 1)^2 + 9 \right] \leq \frac{9}{10}.$$

Và: $d = \frac{9}{10} \Leftrightarrow x_o - 1 = 0 \Leftrightarrow x_o = 1$

Suy ra: $y_o = \frac{x_o}{4} = \frac{1}{4}$

Vậy d lớn nhất khi $x_o = 1, y_o = \frac{1}{4}$.

Tọa độ của M là: $\left(1; \frac{1}{4} \right)$

Giải

Gọi m, n lần lượt là tung độ của M, N vì M, N không thể trùng O nên $m \neq 0, n \neq 0$.

Tọa độ: $M \left(\frac{m^2}{2p}; m \right), N \left(\frac{n^2}{2p}; n \right)$

Ta có: $\overline{OM} \left(\frac{m^2}{2p}; m \right), \overline{ON} \left(\frac{n^2}{2p}; n \right)$

Nên: tam giác OMN vuông tại $O \Leftrightarrow \overline{OM} \cdot \overline{ON} = 0$

$$\Leftrightarrow \frac{m^4}{4p^2} + mn = 0$$

$$\Leftrightarrow mn + 4p^2 = 0$$

$$\Leftrightarrow mn = -4p^2 \quad (1)$$

Đường thẳng MN có phương trình: $2x - (m + n)y + mn = 0$

Hay: $2px - (m + n)y + 4p^2 = 0, \quad (do (1))$.

Giải hệ MN lưu luôn đi qua điểm $I(x_o, y_o)$ cố định thì:

$$2px_o - (m + n)y_o - 4p^2 = 0, \quad \forall m, n.$$

$$\Leftrightarrow -\left(m + n \right) y_o + 2p(x_o - 2p) = 0$$

$$\Leftrightarrow \begin{cases} y_o = 0 \\ x_o - 2p = 0 \end{cases}$$

$$\Leftrightarrow x_o = 2p, \ y_o = 0$$

Vậy MN luôn luôn đi qua điểm cố định $I(2p; 0)$.

4. Tìm điểm m thuộc parabol $(P): y^2 = 64x$, và điểm N thuộc đường thẳng $(\Delta): 4x + 3y + 46 = 0$, để đoạn MN là ngắn nhất.

Giải
Cú vị mỗi điểm M(x₀, y₀) ∈ (P) thì đoạn vuông góc hạ từ M với mỗi điểm M(x₀, y₀) ∈ (P) nên M(x₀, y₀) ∈ (P) nên: y₀ = 64x₀.

Đoạn MN ngắn nhất khi có tọa độ: y₀ = -24

Vậy MN ngắn nhất bằng 2 khi có tọa độ: y₀ = -24, x₀ = \(\frac{-9}{4} \).

C. BÀI TẬP TỰ LUẬN

1. Viết phương trình chính tặc của parabol (P) trong các trường hợp sau:
 a.) (P) có trục là Ox và khoảng cách từ tiêu điểm đến đường chuẩn bằng 3.
 b.) (P) có đường chuẩn x + 15 = 0

2. Cho parabol (P): \(y^2 = 4x \). Một đường thẳng bất kỳ di qua tiêu điểm của (P) cắt (P) tại hai điểm phân biệt A và B. Chứng minh rằng tích các khoảng cách từ A và B đến trục của (P) không đổi.

Đáp số
1. a.) \(y^2 = 6x \)
 b.) \(y^2 = 60x \)
1. Trong mặt phẳng với hệ toạ độ Oxy, xét tam giác ABC vuông tại A, phương trình đường thẳng BC là: \(\sqrt{3}x - y - \sqrt{3} = 0 \), các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếp bàng 2. Tìm toạ độ trọng tâm G của tam giác ABC.

2. Trong mặt phẳng với hệ toạ độ Oxy, cho hai đường tròn:
 \((C_1): x^2 + y^2 - 10x = 0;\) \((C_2): x^2 + y^2 + 4x - 2y - 20 = 0.\)
 a. Viết phương trình đường tròn đi qua các giao điểm của \((C_1), (C_2)\) và tâm nằm trên đường thẳng \((D): x + 6y - 6 = 0.\)
 b. Viết phương trình tiếp tuyến chung của các đường tròn \((C_1), (C_2).\)

3. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có tâm I \(\left(\frac{1}{2}; 0 \right) \), phương trình đường thẳng AB là \(x - 2y + 2 = 0 \) và \(AB = 2AD.\) Tìm toạ độ các đỉnh A, B, C, D biết rằng đỉnh A có hoành độ âm.

4. Trong mặt phẳng với hệ toạ độ Oxy, cho hai đường tròn:
 \((C_1): x^2 + y^2 - 4y - 5 = 0;\) \((C_2): x^2 + y^2 - 6x + 8y + 16 = 0.\)
 Viết phương trình các tiếp tuyến chung của hai đường tròn \((C_1), (C_2).\)

5. Trong mặt phẳng với hệ toạ độ Oxy, cho đường thẳng \((D): x - y + 1 = 0\) và đường tròn \((C): x^2 + y^2 + 2x - 4y = 0.\) Tìm toạ độ điểm M thuộc đường thẳng \((D)\) mà qua đố ta kề được hai đường thẳng tiếp xúc với đường tròn \((C)\) tại A và B sao cho \(A\hat{M}B = 60^\circ.\)

6. Trong mặt phẳng với hệ toạ độ Oxy, cho parabol \(y^2 = 4x \) và điểm I \((0; 2).\) Tìm toạ độ hai điểm M, N thuộc \((P)\) sao cho \(IM = 4IN.\)

7. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có \(AB = AC, \) góc BAC = 90\(^\circ.\) Biết M \((1; -1)\) là trung điểm cạnh BC và G \(\left(\frac{2}{3}; 0 \right) \) là trọng tâm tam giác ABC. Tìm toạ độ các đỉnh A, B, C.

8. Trong mặt phẳng với hệ toạ độ Oxy, cho đường thẳng \((D): x - 7y + 10 = 0.\) Viết phương trình đường tròn có tâm thuộc đường thẳng \((\Delta): 2x + y = 0\) và tiếp xúc với đường thẳng \((D)\) tại điểm A \((4; 2).\)

9. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn \((C): (x - 1)^2 + (y - 2)^2 = 4\) và đường thẳng \((D): x - y - 1 = 0.\) Viết phương trình đường tròn \((C')\) đối xứng với đường tròn \((C)\) qua đường thẳng \((D).\) Tìm toạ độ các giao điểm của \((C)\) và \((C').\)

10. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh A \((1; 0)\) và hai đường thẳng lần lượt chứa các đường cao vẽ từ B và C có phương trình tương đương ứng là: \(x - 2y + 1 = 0.\) và \(3x + y - 1 = 0.\) Tính diện tích của tam giác ABC.

11. Trong mặt phẳng với hệ toạ độ Oxy, cho hai đỉnh A \((0; 2)\) và B \((-\sqrt{3}; -1).\) Tìm toạ độ trực tâm và tâm đường tròn ngoại tiếp của tam giác OAB.

12. Trong mặt phẳng với hệ toạ độ Oxy, cho đường thẳng \((D): x - y + 2 - \sqrt{2} = 0,\) và điểm A \((-1; 1).\) Viết phương trình của đường tròn đi qua điểm A, góc toạ độ O và tiếp xúc với đường thẳng \((D).\)
13. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A (0; 2) và đường thẳng (D): \(x - 2y + 2 = 0 \). Tìm trên đường thẳng (D) hai điểm B, C sao cho tam giác ABC vuông ở B và AB = 2BC.

14. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A (1; 1), B(4; -3). Tìm điểm C thuộc đường thẳng (D): \(x - 2y - 1 = 0 \), sao cho khoảng cách từ C đến đường thẳng AB bằng 6.

15. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm I (-2; 0) và hai đường thẳng (D_1): \(2x - y + 5 = 0 \), (D_2): \(x + y - 3 = 0 \). Viết phương trình của đường thẳng (D) đi qua điểm I và cắt hai đường thẳng (D_1), (D_2) lần lượt tại A, B sao cho: \(IA = 2IB \).

16. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có các đỉnh A (-1;0), B(4; 0), C(0, m) với m ≠ 0. Tìm tọa độ tâm G của tam giácABC theo m. Xác định m để tam giác GAB vuông tại G.

17. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông tại A. Biết A(-2; 4), B(1; 4) và đường thẳng BC đi qua điểm M \((2; \frac{1}{2}) \). Tìm tọa độ đỉnh C.

18. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng (D_1):
\[x - y = 0, \]
\[(D_2): 2x + y - 1 = 0. \] Tìm tọa độ các đỉnh của hình vuông ABCD biết đỉnh A thuộc (D_1), đỉnh C thuộc (D_2) và các đỉnh B, D thuộc trục hoành.

19. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại đỉnh A, có trọng tâm \(G \left(\frac{4}{3}; \frac{1}{3} \right) \), phương trình của đường thẳng BC:
\[x - 2y - 4 = 0 \text{ và đường thẳng BG: } 7x - 4y - 8 = 0. \] Tìm tọa độ các đỉnh A, B, C.

20. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn
\[(C): x^2 + y^2 - 12x - 4y + 36 = 0. \] Viết phương trình đường tròn (C_1) tiếp xúc với hai đường thẳng Ox, Oy đồng thời tiếp xúc ngoài với (C).

21. Trong mặt phẳng với hệ tọa đo Oxy, cho hai điểm A (2; 0), B(6; 4). Viết phương trình của đường tròn (C) tiếp xúc với trục hoành tại điểm A và khoảng cách từ tâm của (C) đến điểm B bằng 5.

22. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm C (2; 0) và elip (E): \(\frac{x^2}{4} + y^2 = 1. \) Tìm tọa độ các điểm A, B thuộc (E), biết rằng hai điểm A, B đối xứng với nhau qua trục hoành và tam giác ABC là tam giác đều.

23. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C):
\[x^2 + y^2 - 4x - 6y - 12 = 0. \] Tìm tọa độ điểm M thuộc đường thẳng (d): \(2x - y + 3 = 0 \), sao cho MI = 2R, trong đó I là tâm của (C) và bán kính của đường tròn (C).

24. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A (0; 5), B (2; 3). Viết phương trình đường tròn đi qua hai điểm A, B và có bán kính \(R = \sqrt{10} \).

25. Trong mặt phẳng với hệ tọa độ Oxy, cho các đường thẳng:
\[(D_1): x + y + 3 = 0, \quad (D_2): x - y - 4 = 0, \quad (D_3): x - 2y = 0. \]

Tìm tọa độ điểm M nằm trên đường thẳng (D_3) sao cho khoảng cách từ M đến đường thẳng (D_1) bằng hai lần khoảng cách từ M đến đường thẳng (D_2).

26. Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E): \(\frac{x^2}{12} + \frac{y^2}{2} = 1. \) Viết phương trình của hyperbol (H) có hai đường tiệm cận là:
\[y = \pm 2x \text{ và có hai tiêu điểm của (E).} \]
27. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh A thuộc đường thẳng d: x – 4y – 2 = 0. Cách BC song song với d. Phương trình đường cào BH: x + y + 3 = 0, và trung điểm cạnh AC là M (1; 1). Tìm toạ độ các đỉnh A, B, C.

28. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C):
$$x^2 + y^2 - 2x - 6y + 6 = 0$$ và điểm M (-3; 1). Gọi T1 và T2 là các tiếp điểm của các tiếp tuyến kề từ M đến (C). Viết phương trình đường T1T2.

29. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC cân tại B với A (1; -1), C(3; 5). Điểm B nằm trên đường thẳng d: 2x – y = 0. Viết phương trình của các đường AB, BC.

30. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh A(2; 1), đường cào qua đỉnh B có phương trình: x - 3y - 7 = 0, và đường trung tuyến qua đỉnh C có phương trình là: x + y + 1 = 0; các đỉnh toạ độ các đỉnh B và C của tam giác.

31. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C):
$$x^2 + y^2 - 2x - 2y + 1 = 0$$ và đường thẳng d: y = x + 3 = 0. Tìm toạ độ điểm M nằm trên đường tròn (C) và quan A, O và tiếp xúc với d.

32. Trong mặt phẳng với hệ toạ độ Oxy, cho đường thẳng d:
$$x - y + 1 - \sqrt{2} = 0$$ và điểm A (-1; 1). Viết phương trình của đường tròn (C) đi qua A, O và tiếp xúc với d.

33. Trong mặt phẳng với hệ toạ đọ Oxy, lập phương trình chính tắc của elip (E) có độ dài trục lớn bằng 2$$\sqrt{2}$$, các đỉnh trên trục nhỏ và các tiêu điểm của (E) cùng nằm trên một đường tròn.

34. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A (0; 2), B (-2; -2), và C (4; -2). Gọi H là chân đường cào từ B; M và N lần lượt là trung điểm của các cạnh AB và BC. Viết phương trình đường tròn đi qua các điểm H, M, N.

35. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C):
$$x^2 + y^2 = 1$$. Đường tròn (C') tâm I (2; 2) cắt (C) tại hai điểm A, B sao cho AB = $$\sqrt{5}$$. Viết phương trình đường thẳng AB.

36. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có trong tâm G (-2; 0), biết phương trình các cạnh AB, AC theo thứ tự lần lượt là: 4x + y + 14 = 0, 2x + 5y – 2 = 0. Tìm toạ độ các đỉnh A, B, C.

37. Trong mặt phẳng với hệ toạ độ Oxy, cho điểm A (2; 2) và các đường thẳng: d1: x + y – 2 = 0, d2: x + y – 8 = 0.

38. Cho đường tròn (C) : $$x^2 + y^2 – 8x + 6y + 21 = 0$$ và đường thẳng d: x + y – 1 = 0. Xác định toạ độ các đỉnh hình vuông ABCD ngoài tiếp (C) biết A ∈ d.

39. Cho đường tròn (C) : $$x^2 + y^2 – 2x + 4y + 2 = 0$$. Viết phương trình của đường tròn (C') có tâm M (5; 1) biết (C') cắt (C) tại các điểm A, B sao cho AB = $$\sqrt{3}$$.

40. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $$(x - 1)^2 + (y + 2)^2 = 9$$ và đường thẳng d: 3x – 4y + m = 0. Tìm m để d chọn đ tại mọi điểm P mà từ d có thể kéo dài tiếp tuyến PA, PB tới (C) (A, B là các tiếp điểm) sao cho tam giác PAC đều.

41. Trong mặt phẳng với hệ toạ độ Oxy, cho điểm A (2;1), lấy điểm B thuộc trực Oy có hoành độ x ≥ 0 và điểm C thuộc trực Ox có tung độ y ≥ 0 sao cho tam giác ABC vuông tại A. Tìm B, C sao cho tam giác ABC có diện tích lớn nhất.

42. Trong mặt phẳng với hệ toạ độ Oxy, cho các điểm A (0;1), B (2; -1) và các đường thẳng:
$$d_1: (m - 1)x + (m - 2)y + 2 - m = 0$$
d₁: (2 – m)x + (m – 1)y + 3m – 5 = 0.

Chứng minh rằng d₁ và d₂ luôn luôn cắt nhau. Gọi P là giao điểm của d₁ và d₂. Tìm m sao cho PA + PB lớn nhất.

43. Trong mặt phẳng với hệ tọa độ Oxy, hãy viết phương trình chính tắc của elip (E) biết rằng (E) có tâm tại

\[\begin{align*}
\frac{x^2}{5} + \frac{y^2}{3} &= 1.
\end{align*} \]

và hình chiếu nó của (E) có chu vi bằng 20.

44. Trong mặt phẳng với hệ tọa độ Oxy, hãy xác định toa độ đỉnh C của tam giác ABC biết rằng hình chiếu

\[\begin{align*}
\frac{x^2}{4} + \frac{y^2}{3} &= 1.
\end{align*} \]

vuông góc của C trên đường AB là điểm

H (-1; -1), đường phân giác trong của góc A có phương trình

\[\begin{align*}
x - y + 2 &= 0 \quad \text{và đường cao ké từ B có phương trình} \quad 4x + 3y - 1 = 0.
\end{align*} \]

45. Trong mặt phẳng với hệ tọa độ Oxy, cho parabol (P): \(y^2 = 16x \) và điểm A (1; 4). Hai điểm phân biệt B, C (B và C khác A) di động trên (P) sao cho góc \(BAC = 90^\circ \). Chứng minh rằng đường thẳng BC luôn đi qua một điểm cố định.

46. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm I (0; 2) là giao điểm của hai đường chéo AC và BD. Điểm

M (1; 5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng \(\Delta \) x + y – 5 = 0. Viét phương trình đường thẳng AB.

47. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn \((C) \):

\[\begin{align*}
(x - 2)^2 + y^2 &= \frac{4}{5} \quad \text{và hai đường thẳng} \quad \Delta_1: x - y = 0; \quad \Delta_2: x - 7y = 0. \quad \text{Xác định toa độ tâm} \quad K \quad \text{và tính bán kính đường tròn}(C_1); \quad \text{biết đường tròn} \quad (C_1) \quad \text{tiếp xúc với các đường thẳng} \quad \Delta_1, \quad \Delta_2 \quad \text{và tâm} \quad K \quad \text{thuộc đường tròn}(C).
\end{align*} \]

48. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có

M (2; 0) là trung điểm của cạnh AB. Đường tròn tần tuyến và đường cao qua đỉnh A lần lượt có phương trình là

\[\begin{align*}
7x - 2y - 3 &= 0 \quad \text{và} \quad 6x - y - 4 = 0. \quad \text{Viết phương trình đường thẳng AC.}
\end{align*} \]

49. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d₁:

\[\begin{align*}
\sqrt{3}x + y &= 0 \quad \text{và} \quad d_2: \sqrt{3}x - y &= 0. \quad \text{Gọi} \quad (T) \quad \text{là đường tròn tiếp xúc với} \quad d_1 \text{tại} \quad A, \quad \text{cắt} \quad d_2 \text{tại hai điểm} \quad B \quad \text{và} \quad C \quad \text{sao cho tam giác} \quad ABC \text{tuân theo} \quad A. \quad \text{Viết phương trình của} \quad (T), \quad \text{biết tam giác ABC có diện tích bằng} \quad \frac{\sqrt{3}}{2} \quad \text{và điểm A có hoàn độ đường.}
\end{align*} \]

50. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông tại A, có đỉnh C (-4; 1), phân giác trong góc A có phương trình

\[\begin{align*}
x + y - 5 &= 0. \quad \text{Viết phương trình đường thẳng BC, biết diện tích tam giác ABC bằng 24 và đỉnh A có hoàn độ đường.}
\end{align*} \]

51. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có đỉnh A (3; -7), trực tâm là H (3; -1), tâm đường tròn ngoại tiếp là I (-2; 0). Xác định toa độ đỉnh C, biết C có hoàn độ đường.

52. Trong mặt phẳng Oxy, cho đường tròn \((C): x^2 + y^2 + 4x + 4y + 6 = 0 \) và đường thẳng \(\Delta: x + my - 2m + 3 = 0 \), với m là tham số thực. Gọi I là tâm của đường tròn \((C) \) và m để \(\Delta \) cắt \((C) \) tại hai điểm phân biệt A và B sao cho diện tích tam giác IAB lớn nhất.

53. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A, đỉnh A (-1; 4), và các đỉnh B, C thuộc đường thẳng \(\Delta: x - y - 4 = 0 \). Xác định toa độ các điểm B và C biết diện tích tam giác ABC bằng 18.
54. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C):

\[(x - 1)^2 + y^2 = 1.\]
Gọi I là tâm của (C). Xác định tọa độ điểm M thuộc (C) sao cho \(\angle IMO = 30^\circ\).

55. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A (6; 6); đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình \(x + y - 4 = 0.\) Tìm tọa độ các đỉnh B và C, biết điểm E(1; -3) nằm trên đường cao từ đỉnh C của tam giác đó cho.

56. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A (2; \(\sqrt{3}\)) và elip (E): \(\frac{x^2}{3} + \frac{y^2}{2} = 1.\) Gọi F1 và F2 là các tiêu điểm của (E) (F1 có hoành độ âm); M là giao điểm của đường thẳng AF1 với (E); N là điểm đối xứng của F2 qua M. Viết phương trình đường tròn ngoại tiếp tam giác ANF2.

57. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(0; 2) và \(\Delta\) là đường thẳng đi qua O. Gọi H là hình chiếu vuông góc của A trên \(\Delta.\) Viết phương trình đường thẳng \(\Delta,\) biết khoảng cách từ H đến trục hoành bằng AH.

DÁP SÓ

1. \(G \left(\frac{7 + 4\sqrt{3}}{3}; \frac{6 + 2\sqrt{3}}{3} \right) \) và \(G \left(-\frac{4\sqrt{3} - 1}{3}; -\frac{6 - 2\sqrt{3}}{3} \right)\)

2. \(x^2 + y^2 - 24x + 2y + 20 = 0; \quad x + 7y - 5 \pm 25\sqrt{2} = 0.\)

3. A(-2; 0), B(2; 2), C(3; 0), D (-1; -2).

4. \(2x + y - 2 \pm 3\sqrt{5} = 0; \quad y + 1 = 0; \quad 4x - 3y - 9 = 0.\)

5. M (3; 4) và M (-3; -2).

6. M(4; -2), N(1; 1) và M (36; 6), N (9 ; 3).

7. A (0; 2), B (4; 0), C (-2; -2).

8. \((x - 6)^2 + (y + 12)^2 = 200.\)

9. A (1; 0), B (3; 2).

10. 14 (đvdt).

11. H(\(\sqrt{3}; -1), I \left(-\sqrt{3}; 1\right)\)

12. \(x^2 + (y - 1)^2 - 1 = 0; \quad (x + 1)^2 + y^2 = 1.\)

13. B \(\left(\frac{2}{5}; \frac{6}{5} \right); C (0;1)\) và C \(\left(\frac{4}{5}; \frac{7}{5} \right)\)

14. \(C(7;3)\) và \(C \left(-\frac{43}{11}; -\frac{27}{11} \right).\)

15. \(7x - 3y + 14 = 0.\)

16. \(G \left(1; \frac{m}{3} \right)\) và \(m = \pm 3\sqrt{6}.\)

17. C(3;5)

18. A (1; 1), B(0;0), C (1; -1), D (2; 0) hoặc A (1;1), B(2;0), C (1; -1), D (0; 0).

19. A (0; 3), B(0; -2), C (4; 0).
20. \[(x - 2)^2 + (y - 2)^2 = 4 \quad ; \quad (x + 18)^2 + (y - 18)^2 = 18.\]
21. \[(x - 2)^2 + (y - 7)^2 = 49 \quad ; \quad (x - 2)^2 + (y - 1)^2 = 1.\]
22. \[A\left(\frac{2}{7}, \frac{4\sqrt{3}}{7}\right) ; B\left(\frac{2}{7}, -\frac{4\sqrt{3}}{7}\right) \vee A\left(\frac{2}{7}, \frac{4\sqrt{3}}{7}\right) ; B\left(\frac{2}{7}, \frac{4\sqrt{3}}{7}\right).\]
23. \[M(-4; -5) \vee M\left(\frac{24}{5}, \frac{63}{5}\right).\]
24. \[(x + 1)^2 + (y - 2)^2 = 10 \quad ; \quad (x - 3)^2 + (y - 6)^2 = 10.\]
25. \[M(-22; -11) \text{ hoặc } M(2; 1).\]
26. \[\frac{x^2}{2} - \frac{y^2}{8} = 1.\]
27. \[A\left(-\frac{2}{3}, -\frac{2}{3}\right) ; B(-4;1), C\left(\frac{8}{3}, \frac{8}{3}\right).\]
28. \[2x + y - 3 = 0.\]
29. \[AB: 23x - y - 4 = 0 \quad \text{BC: } 19x - 13y + 8 = 0\]
30. \[B (-2; -3), \quad C (4; -3)\]
31. \[M (1; 4) \text{ hoặc } M (-2; 1).\]
32. \[x^2 + y^2 - 2y = 0 \text{ hoặc } x^2 + y^2 + 2x = 0\]
33. \[\frac{x^2}{8} + \frac{y^2}{4} = 1.\]
34. \[x^2 + y^2 - x + y - 2 = 0\]
35. \[x + y \pm 1 = 0.\]
36. \[A (-4;2), \quad B (-3; -2), \quad C (1; 0)\]
37. \[B (-1; 3), \quad C (3; 5) \text{ hoặc } B (3; -1), \quad C (5; 3)\]
38. \[A (2;-1), \quad B (2; -5), \quad C (6; 5), \quad D (6; -1) \text{ hoặc } A (6;-5), \quad B (6; -1), \quad C (2; -1), \quad D (2; -5)\]
39. \[(x - 5)^2 + (y - 1)^2 = 13 \quad \text{vì} \quad (x - 5)^2 + (y - 1)^2 = 43.\]
40. \[m = 19, \quad m = -41.\]
41. \[B (0; 0), \quad C (0; 5)\]
42. \[m = 1, \quad m = 2.\]
43. \[\frac{x^2}{9} + \frac{y^2}{4} = 1.\]
44. \[C\left(-\frac{10}{3}, \frac{3}{4}\right).\]
45. \[(17; -4)\]
46. \[y - 5 = 0 \text{ hoặc } x - 4y + 19 = 0.\]
47. \[K\left(\frac{8}{5}; \frac{4}{5}\right); R = \frac{2\sqrt{2}}{5}.\]
48. $3x - 4y + 5 = 0.$

49. \(\left(x + \frac{\sqrt{3}}{6} \right)^2 + \left(y + \frac{3}{2} \right)^2 = 1. \)

50. $3x - 4y + 16 = 0$

51. $C \left(- 2 + \sqrt{65}; 3 \right)$

52. $m = 0 \text{ và } m = \frac{8}{15}.$

53. $B \left(\frac{11}{2}; \frac{3}{2} \right), C \left(\frac{3}{2}; -\frac{5}{2} \right) \text{ và } B \left(\frac{3}{2}; -\frac{5}{2} \right), C \left(\frac{11}{2}; \frac{3}{2} \right).$

54. $M \left(\frac{3}{2}; \frac{\sqrt{3}}{2} \right)$

55. $B \left(0; -4 \right) \text{ và } C \left(-4; 0 \right) \text{ và } B \left(-6; 2 \right), C \left(2; -6 \right)$

56. $(x - 1)^2 + \left(y - \frac{2\sqrt{3}}{3} \right)^2 = \frac{4}{3}.$

57. $(\sqrt{5} - 1)x \pm 2\sqrt{5} - 2y = 0.$